Super-resolution multi-contrast unbiased eye atlases with deep probabilistic refinement.

IF 1.9 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Journal of Medical Imaging Pub Date : 2024-11-01 Epub Date: 2024-11-14 DOI:10.1117/1.JMI.11.6.064004
Ho Hin Lee, Adam M Saunders, Michael E Kim, Samuel W Remedios, Lucas W Remedios, Yucheng Tang, Qi Yang, Xin Yu, Shunxing Bao, Chloe Cho, Louise A Mawn, Tonia S Rex, Kevin L Schey, Blake E Dewey, Jeffrey M Spraggins, Jerry L Prince, Yuankai Huo, Bennett A Landman
{"title":"Super-resolution multi-contrast unbiased eye atlases with deep probabilistic refinement.","authors":"Ho Hin Lee, Adam M Saunders, Michael E Kim, Samuel W Remedios, Lucas W Remedios, Yucheng Tang, Qi Yang, Xin Yu, Shunxing Bao, Chloe Cho, Louise A Mawn, Tonia S Rex, Kevin L Schey, Blake E Dewey, Jeffrey M Spraggins, Jerry L Prince, Yuankai Huo, Bennett A Landman","doi":"10.1117/1.JMI.11.6.064004","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Eye morphology varies significantly across the population, especially for the orbit and optic nerve. These variations limit the feasibility and robustness of generalizing population-wise features of eye organs to an unbiased spatial reference.</p><p><strong>Approach: </strong>To tackle these limitations, we propose a process for creating high-resolution unbiased eye atlases. First, to restore spatial details from scans with a low through-plane resolution compared with a high in-plane resolution, we apply a deep learning-based super-resolution algorithm. Then, we generate an initial unbiased reference with an iterative metric-based registration using a small portion of subject scans. We register the remaining scans to this template and refine the template using an unsupervised deep probabilistic approach that generates a more expansive deformation field to enhance the organ boundary alignment. We demonstrate this framework using magnetic resonance images across four different tissue contrasts, generating four atlases in separate spatial alignments.</p><p><strong>Results: </strong>When refining the template with sufficient subjects, we find a significant improvement using the Wilcoxon signed-rank test in the average Dice score across four labeled regions compared with a standard registration framework consisting of rigid, affine, and deformable transformations. These results highlight the effective alignment of eye organs and boundaries using our proposed process.</p><p><strong>Conclusions: </strong>By combining super-resolution preprocessing and deep probabilistic models, we address the challenge of generating an eye atlas to serve as a standardized reference across a largely variable population.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 6","pages":"064004"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561295/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.11.6.064004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Eye morphology varies significantly across the population, especially for the orbit and optic nerve. These variations limit the feasibility and robustness of generalizing population-wise features of eye organs to an unbiased spatial reference.

Approach: To tackle these limitations, we propose a process for creating high-resolution unbiased eye atlases. First, to restore spatial details from scans with a low through-plane resolution compared with a high in-plane resolution, we apply a deep learning-based super-resolution algorithm. Then, we generate an initial unbiased reference with an iterative metric-based registration using a small portion of subject scans. We register the remaining scans to this template and refine the template using an unsupervised deep probabilistic approach that generates a more expansive deformation field to enhance the organ boundary alignment. We demonstrate this framework using magnetic resonance images across four different tissue contrasts, generating four atlases in separate spatial alignments.

Results: When refining the template with sufficient subjects, we find a significant improvement using the Wilcoxon signed-rank test in the average Dice score across four labeled regions compared with a standard registration framework consisting of rigid, affine, and deformable transformations. These results highlight the effective alignment of eye organs and boundaries using our proposed process.

Conclusions: By combining super-resolution preprocessing and deep probabilistic models, we address the challenge of generating an eye atlas to serve as a standardized reference across a largely variable population.

具有深度概率细化功能的超分辨率多对比度无偏眼图。
目的:不同人群的眼部形态差异很大,尤其是眼眶和视神经。这些差异限制了将人群眼部器官特征归纳为无偏空间参考的可行性和稳健性:为了解决这些限制,我们提出了一种创建高分辨率无偏眼图谱的方法。首先,与高平面内分辨率相比,我们采用了一种基于深度学习的超分辨率算法,以还原低平面内分辨率扫描的空间细节。然后,我们使用一小部分受试者扫描数据,通过基于度量的迭代配准生成一个无偏的初始参考。我们将剩余的扫描结果注册到该模板上,并使用一种无监督的深度概率方法来完善模板,该方法可生成一个更广阔的形变场,以增强器官边界对齐。我们使用四种不同组织对比度的磁共振图像演示了这一框架,生成了四张不同空间排列的地图集:结果:与包含刚性、仿射和可变形变换的标准配准框架相比,我们发现在使用 Wilcoxon 符号秩检验改进模板时,四个标记区域的平均 Dice 分数有了显著提高。这些结果凸显了我们提出的流程能有效对准眼球器官和边界:通过将超分辨率预处理与深度概率模型相结合,我们解决了生成眼图集的难题,该图集可作为多变人群的标准化参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medical Imaging
Journal of Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.10
自引率
4.20%
发文量
0
期刊介绍: JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信