Fan Zhengyang , Zhao Bianbian , Zeng Yuhan , Lai Ruilian , Zhao Xiaobing , Chen Yukun , Lin Yuling , Du Yinggang , Lai Zhongxiong
{"title":"MaMPK19, a key gene enhancing cold resistance by activating the CBF pathway in banana","authors":"Fan Zhengyang , Zhao Bianbian , Zeng Yuhan , Lai Ruilian , Zhao Xiaobing , Chen Yukun , Lin Yuling , Du Yinggang , Lai Zhongxiong","doi":"10.1016/j.plaphy.2024.109290","DOIUrl":null,"url":null,"abstract":"<div><div><em>MPKs</em> play an essential part role in the process of plant low temperature stress. In this study, the specific inhibitor SB203580 of <em>MPK</em> was used to spray banana leaves and <em>MaMPK19</em> was overexpressed in <em>N.benthamiana</em> and banana to explore the effect of <em>MaMPK19</em> on cold resistance and the regulation mode of downstream genes. Additionally, we optimized the method of genetic transformation of banana laying the foundation for the establishment of an efficient genetic transformation system. The results showed that 40 μmol L<sup>−1</sup> SB203580 could significantly reduce the expression of <em>MaMPK19</em> and <em>MaCBFs</em>, as well as weaken the cold resistance of banana at 4 °C. After <em>agrobacterium tumefaciens</em> infection, the regeneration rates of adventitious buds in ‘Tianbao’, ‘Brazilian’ and‘Indonesia’ (<em>Musa</em> spp. AAA Group, Cavendish) reached 10.43%, 15.81% and 14.23%, respectively. And the positive rates reached 10.71%, 2.25% and 6.94%, respectively. Overexpression of <em>MaMPK19</em> enhanced the cold resistance of <em>N.benthamiana</em> and bananas. <em>MaMPK19</em> promoted the expression of <em>MaICE1</em>, <em>MaDREB1D</em> and <em>MaCOR413</em>. Furthermore, <em>MaMPK19</em> increased POD activity and the content of ABA and JA. Our study highlights the importance of <em>MaMPK19</em> in improving the cold resistance of bananas and provides a reference for biological breeding.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"217 ","pages":"Article 109290"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942824009586","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
MPKs play an essential part role in the process of plant low temperature stress. In this study, the specific inhibitor SB203580 of MPK was used to spray banana leaves and MaMPK19 was overexpressed in N.benthamiana and banana to explore the effect of MaMPK19 on cold resistance and the regulation mode of downstream genes. Additionally, we optimized the method of genetic transformation of banana laying the foundation for the establishment of an efficient genetic transformation system. The results showed that 40 μmol L−1 SB203580 could significantly reduce the expression of MaMPK19 and MaCBFs, as well as weaken the cold resistance of banana at 4 °C. After agrobacterium tumefaciens infection, the regeneration rates of adventitious buds in ‘Tianbao’, ‘Brazilian’ and‘Indonesia’ (Musa spp. AAA Group, Cavendish) reached 10.43%, 15.81% and 14.23%, respectively. And the positive rates reached 10.71%, 2.25% and 6.94%, respectively. Overexpression of MaMPK19 enhanced the cold resistance of N.benthamiana and bananas. MaMPK19 promoted the expression of MaICE1, MaDREB1D and MaCOR413. Furthermore, MaMPK19 increased POD activity and the content of ABA and JA. Our study highlights the importance of MaMPK19 in improving the cold resistance of bananas and provides a reference for biological breeding.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.