Melanie Auffan, Gregory V Lowry, Jaleesia Amos, Nathan Bossa, Mark R Wiesner
{"title":"Leveraging nanoparticle environmental health and safety research in the study of micro- and nano-plastics.","authors":"Melanie Auffan, Gregory V Lowry, Jaleesia Amos, Nathan Bossa, Mark R Wiesner","doi":"10.1016/j.impact.2024.100534","DOIUrl":null,"url":null,"abstract":"<p><p>Lessons learned, methodologies, and application of tools that have been developed within the context of research on the environmental impacts, health, and safety of nanomaterials (nano-EHS) provide a solid foundation for research on nano/microplastics. In this communication, we summarize key discoveries obtained through major research efforts over the last two decades in the area of nano-EHS that are applicable for the study of micro- and nano-plastics (referred to here more generally as particulate plastics). We focus on how non-equilibrium particle transport processes affect: 1) bio-physico-chemical mechanisms of particle toxicity and determining dose-response relationships; 2) the potential for biouptake, bioaccumulation, translocation, trophic transfer and intergenerational effects of particulate contaminants; 3) extrapolations from laboratory experiments to complex systems and the impact of environmental transformations; 4) the formulation of functional assays as a basis for predicting the impacts of particulate contaminants in complex environments; 5) the relative importance of incidental particles compared with engineered particles and, 6) experience with data platforms, curation, and experimental design.</p>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":" ","pages":"100534"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NanoImpact","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.impact.2024.100534","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Lessons learned, methodologies, and application of tools that have been developed within the context of research on the environmental impacts, health, and safety of nanomaterials (nano-EHS) provide a solid foundation for research on nano/microplastics. In this communication, we summarize key discoveries obtained through major research efforts over the last two decades in the area of nano-EHS that are applicable for the study of micro- and nano-plastics (referred to here more generally as particulate plastics). We focus on how non-equilibrium particle transport processes affect: 1) bio-physico-chemical mechanisms of particle toxicity and determining dose-response relationships; 2) the potential for biouptake, bioaccumulation, translocation, trophic transfer and intergenerational effects of particulate contaminants; 3) extrapolations from laboratory experiments to complex systems and the impact of environmental transformations; 4) the formulation of functional assays as a basis for predicting the impacts of particulate contaminants in complex environments; 5) the relative importance of incidental particles compared with engineered particles and, 6) experience with data platforms, curation, and experimental design.
期刊介绍:
NanoImpact is a multidisciplinary journal that focuses on nanosafety research and areas related to the impacts of manufactured nanomaterials on human and environmental systems and the behavior of nanomaterials in these systems.