Vanessa Passin, Maria G Ledesma-Colunga, Sandro Altamura, Martina U Muckenthaler, Ulrike Baschant, Lorenz C Hofbauer, Martina Rauner
{"title":"Depletion of macrophages and osteoclast precursors mitigates iron overload-mediated bone loss.","authors":"Vanessa Passin, Maria G Ledesma-Colunga, Sandro Altamura, Martina U Muckenthaler, Ulrike Baschant, Lorenz C Hofbauer, Martina Rauner","doi":"10.1002/iub.2928","DOIUrl":null,"url":null,"abstract":"<p><p>Iron is an essential element for physiological cellular processes, but is toxic in excess. Iron overload diseases are commonly associated with low bone mass. Increased bone resorption by osteoclasts as well as decreased bone formation by osteoblasts have been implicated in bone loss under iron overload conditions. However, the exact contribution of individual cell types has not yet been formally tested. In this study, we aimed to investigate the role of osteoclast precursors in iron overload-induced bone loss. To that end, we used clodronate liposomes to deplete phagocytic cells (including macrophages and osteoclast precursors) in male C57BL/6J mice that were exposed to ferric derisomaltose. Bone microarchitecture and bone turnover were assessed after 4 weeks. The application of clodronate resulted in the efficient depletion of circulating myeloid-lineage cells by about 70%. Depletion of osteoclast precursors mitigated iron overload-induced trabecular bone loss at the lumbar vertebrae and distal femur. While clodronate treatment led to a profound inhibition of bone turnover in control mice, it significantly reduced osteoclast numbers in iron-treated mice without further impacting the bone formation rate or serum PINP levels. Our observations suggest that even though bone formation is markedly suppressed by iron overload, osteoclasts also play a key role in iron overload-induced bone loss and highlight them as potential therapeutic targets.</p>","PeriodicalId":14728,"journal":{"name":"IUBMB Life","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUBMB Life","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/iub.2928","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Iron is an essential element for physiological cellular processes, but is toxic in excess. Iron overload diseases are commonly associated with low bone mass. Increased bone resorption by osteoclasts as well as decreased bone formation by osteoblasts have been implicated in bone loss under iron overload conditions. However, the exact contribution of individual cell types has not yet been formally tested. In this study, we aimed to investigate the role of osteoclast precursors in iron overload-induced bone loss. To that end, we used clodronate liposomes to deplete phagocytic cells (including macrophages and osteoclast precursors) in male C57BL/6J mice that were exposed to ferric derisomaltose. Bone microarchitecture and bone turnover were assessed after 4 weeks. The application of clodronate resulted in the efficient depletion of circulating myeloid-lineage cells by about 70%. Depletion of osteoclast precursors mitigated iron overload-induced trabecular bone loss at the lumbar vertebrae and distal femur. While clodronate treatment led to a profound inhibition of bone turnover in control mice, it significantly reduced osteoclast numbers in iron-treated mice without further impacting the bone formation rate or serum PINP levels. Our observations suggest that even though bone formation is markedly suppressed by iron overload, osteoclasts also play a key role in iron overload-induced bone loss and highlight them as potential therapeutic targets.
期刊介绍:
IUBMB Life is the flagship journal of the International Union of Biochemistry and Molecular Biology and is devoted to the rapid publication of the most novel and significant original research articles, reviews, and hypotheses in the broadly defined fields of biochemistry, molecular biology, cell biology, and molecular medicine.