ONC206, an imipridone derivative, demonstrates anti-colorectal cancer activity against stem/progenitor cells in 3D cell cultures and in patient-derived organoids.

IF 3.6 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Alissar Monzer, Fatima Ghamlouche, Kevork Wakimian, Farah Ballout, Samar Al Bitar, Amani Yehya, Mariam Kanso, Nour Saheb, Ayman Tawil, Samer Doughan, Maher Hussein, Deborah Mukherji, Walid Faraj, Joshua E Allen, Varun V Prabhu, Tamara Abou-Antoun, Hala Gali-Muhtasib, Wassim Abou-Kheir
{"title":"ONC206, an imipridone derivative, demonstrates anti-colorectal cancer activity against stem/progenitor cells in 3D cell cultures and in patient-derived organoids.","authors":"Alissar Monzer, Fatima Ghamlouche, Kevork Wakimian, Farah Ballout, Samar Al Bitar, Amani Yehya, Mariam Kanso, Nour Saheb, Ayman Tawil, Samer Doughan, Maher Hussein, Deborah Mukherji, Walid Faraj, Joshua E Allen, Varun V Prabhu, Tamara Abou-Antoun, Hala Gali-Muhtasib, Wassim Abou-Kheir","doi":"10.1007/s43440-024-00676-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Colorectal cancer (CRC) remains one of the most frequently diagnosed and life-threatening malignancies worldwide. CRC's high recurrence rates and drug resistance have been correlated with a subpopulation of dormant slowly dividing cells termed CRC stem cells (CCSCs). Consequently, there is a pressing need to identify novel therapeutics that can effectively and specifically target CCSCs. Imipridones are promising structurally related anticancer molecules that showed efficacy in several solid and hematological preclinical models and phase I/II/III clinical trials. This study mainly aimed to assess the potential anticancer effects of ONC206, an imipridone derivative, on CRC three-dimensional in vitro culture systems using HCT116 and HT29 cells. Importantly, the study aimed at using CRC patient-derived organoids (PDOs) to test the potential therapeutic effect of ONC206.</p><p><strong>Methods: </strong>Two-dimensional cell proliferation, viability, migration, and invasion assays were used to assess the effects of ONC206 on two colorectal cancer cell lines, HCT116 and HT29, in vitro. Immunofluorescence imaging, flow cytometry, and western blot analysis were also performed to investigate the mechanism of action of this drug. Sphere formation assay and CRC PDOs were employed to evaluate the effect of ONC206 on CRC cells in a 3D setting and specifically its potency in targeting the CRC stem/progenitor subpopulation of cells.</p><p><strong>Results: </strong>Our results showed that ONC206 was more potent than its parental molecule ONC201 in inhibiting the proliferation and viability of HCT116 and HT29 cells. Moreover, ONC206 significantly reduced the migration and invasion indices of CRC cells. These effects were accompanied by an increase in reactive oxygen species (ROS) production, sub-G1 phase accumulation, and apoptosis in HCT116 and HT29 cells. Furthermore, ONC206 significantly inhibited the 3D colonospheres growth and self-renewal ability of CCSCs more potently than ONC201, which was associated with a decrease in the expression of CSC-related markers. Lastly, ONC206 significantly reduced the growth of organoids derived from CRC patients.</p><p><strong>Conclusion: </strong>Collectively, our findings demonstrate that ONC206 is an effective anticancer molecule capable of targeting CCSCs, which may represent a novel therapeutic strategy that can overcome CRC resistance and recurrence.</p>","PeriodicalId":19947,"journal":{"name":"Pharmacological Reports","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacological Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s43440-024-00676-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Colorectal cancer (CRC) remains one of the most frequently diagnosed and life-threatening malignancies worldwide. CRC's high recurrence rates and drug resistance have been correlated with a subpopulation of dormant slowly dividing cells termed CRC stem cells (CCSCs). Consequently, there is a pressing need to identify novel therapeutics that can effectively and specifically target CCSCs. Imipridones are promising structurally related anticancer molecules that showed efficacy in several solid and hematological preclinical models and phase I/II/III clinical trials. This study mainly aimed to assess the potential anticancer effects of ONC206, an imipridone derivative, on CRC three-dimensional in vitro culture systems using HCT116 and HT29 cells. Importantly, the study aimed at using CRC patient-derived organoids (PDOs) to test the potential therapeutic effect of ONC206.

Methods: Two-dimensional cell proliferation, viability, migration, and invasion assays were used to assess the effects of ONC206 on two colorectal cancer cell lines, HCT116 and HT29, in vitro. Immunofluorescence imaging, flow cytometry, and western blot analysis were also performed to investigate the mechanism of action of this drug. Sphere formation assay and CRC PDOs were employed to evaluate the effect of ONC206 on CRC cells in a 3D setting and specifically its potency in targeting the CRC stem/progenitor subpopulation of cells.

Results: Our results showed that ONC206 was more potent than its parental molecule ONC201 in inhibiting the proliferation and viability of HCT116 and HT29 cells. Moreover, ONC206 significantly reduced the migration and invasion indices of CRC cells. These effects were accompanied by an increase in reactive oxygen species (ROS) production, sub-G1 phase accumulation, and apoptosis in HCT116 and HT29 cells. Furthermore, ONC206 significantly inhibited the 3D colonospheres growth and self-renewal ability of CCSCs more potently than ONC201, which was associated with a decrease in the expression of CSC-related markers. Lastly, ONC206 significantly reduced the growth of organoids derived from CRC patients.

Conclusion: Collectively, our findings demonstrate that ONC206 is an effective anticancer molecule capable of targeting CCSCs, which may represent a novel therapeutic strategy that can overcome CRC resistance and recurrence.

ONC206是一种咪蚜酮衍生物,在三维细胞培养物和患者衍生的器官组织中对干细胞/祖细胞具有抗结直肠癌活性。
背景:结肠直肠癌(CRC)仍然是全球最常诊断出并威胁生命的恶性肿瘤之一。CRC 的高复发率和耐药性与被称为 CRC 干细胞(CCSCs)的休眠慢分裂细胞亚群有关。因此,迫切需要找到能有效、特异性地靶向 CCSCs 的新型疗法。咪啶酮类化合物是结构相关的抗癌分子,在多个实体和血液病临床前模型和I/II/III期临床试验中显示出良好的疗效。本研究的主要目的是利用 HCT116 和 HT29 细胞,评估 ONC206(一种亚胺吡啶酮衍生物)对 CRC 三维体外培养系统的潜在抗癌作用。重要的是,该研究旨在使用 CRC 患者衍生的器官组织(PDOs)来测试 ONC206 的潜在治疗效果:方法:采用二维细胞增殖、活力、迁移和侵袭试验评估 ONC206 对 HCT116 和 HT29 两种结直肠癌细胞系的体外作用。此外,还进行了免疫荧光成像、流式细胞术和 Western 印迹分析,以研究该药物的作用机制。采用球形成试验和 CRC PDOs 评估 ONC206 在三维环境中对 CRC 细胞的作用,特别是其靶向 CRC 干/祖细胞亚群的效力:结果表明,在抑制HCT116和HT29细胞的增殖和活力方面,ONC206比其亲本分子ONC201更有效。此外,ONC206 还能显著降低 CRC 细胞的迁移和侵袭指数。在产生这些效应的同时,HCT116 和 HT29 细胞中的活性氧(ROS)生成、亚 G1 期积累和细胞凋亡也有所增加。此外,与 ONC201 相比,ONC206 能更有效地抑制 CCSCs 的三维结肠球生长和自我更新能力,这与 CSC 相关标志物的表达减少有关。最后,ONC206能显著降低来自CRC患者的器官组织的生长:总之,我们的研究结果表明,ONC206是一种能靶向CCSCs的有效抗癌分子,它可能代表了一种能克服CRC耐药性和复发的新型治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmacological Reports
Pharmacological Reports 医学-药学
CiteScore
8.40
自引率
0.00%
发文量
91
审稿时长
6 months
期刊介绍: Pharmacological Reports publishes articles concerning all aspects of pharmacology, dealing with the action of drugs at a cellular and molecular level, and papers on the relationship between molecular structure and biological activity as well as reports on compounds with well-defined chemical structures. Pharmacological Reports is an open forum to disseminate recent developments in: pharmacology, behavioural brain research, evidence-based complementary biochemical pharmacology, medicinal chemistry and biochemistry, drug discovery, neuro-psychopharmacology and biological psychiatry, neuroscience and neuropharmacology, cellular and molecular neuroscience, molecular biology, cell biology, toxicology. Studies of plant extracts are not suitable for Pharmacological Reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信