Michael B. J. Kelly, Vanessa Penna-Gonçalves, Nikolas J. Willmott, Donald James McLean, Jay R. Black, Jonas O. Wolff, Marie E. Herberstein
{"title":"Small Brains: Body Shape Constrains Tissue Allocation to the Central Nervous System in Ant-Mimicking Spiders","authors":"Michael B. J. Kelly, Vanessa Penna-Gonçalves, Nikolas J. Willmott, Donald James McLean, Jay R. Black, Jonas O. Wolff, Marie E. Herberstein","doi":"10.1002/cne.25680","DOIUrl":null,"url":null,"abstract":"<p>In Batesian mimicry, mimetic traits are not always as convincing as predicted by theory—in fact, inaccurate mimicry with only a superficial model resemblance is common and taxonomically widespread. The “<i>selection trade-offs hypothesis</i>” proposes a life-history trade-off between accurate mimetic traits and one or more vital biological functions. Here, using an accurate myrmecomorphic (ant-mimicking) jumping spider species, <i>Myrmarachne smaragdina</i>, we investigate how myrmecomorphic modifications to the body shape impact the internal anatomy in a way that could be functionally limiting. Specifically, via x-ray micro-computed tomography (microCT), we quantify how the spider's constricted prosoma, which emulates the head and thorax of ants, impacts the size of the central nervous system (CNS) and the venom glands. Although, relative to their whole-body mass, we found no significant difference in venom gland volume, the CNS of the ant-mimicking jumping spider was significantly smaller when compared with a relatively closely related non-mimic jumping spider, indicating that some trade-off between mimic accuracy and size of neural anatomy, as articulated by the “<i>selection trade-offs hypothesis</i>,” is a possibility. Our explorative evidence enables and encourages broader investigation of how variable mimic accuracy impacts the neuroanatomy in ant mimics as a direct test of the “<i>selection trade-offs hypothesis</i>.”</p>","PeriodicalId":15552,"journal":{"name":"Journal of Comparative Neurology","volume":"532 11","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cne.25680","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Neurology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cne.25680","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In Batesian mimicry, mimetic traits are not always as convincing as predicted by theory—in fact, inaccurate mimicry with only a superficial model resemblance is common and taxonomically widespread. The “selection trade-offs hypothesis” proposes a life-history trade-off between accurate mimetic traits and one or more vital biological functions. Here, using an accurate myrmecomorphic (ant-mimicking) jumping spider species, Myrmarachne smaragdina, we investigate how myrmecomorphic modifications to the body shape impact the internal anatomy in a way that could be functionally limiting. Specifically, via x-ray micro-computed tomography (microCT), we quantify how the spider's constricted prosoma, which emulates the head and thorax of ants, impacts the size of the central nervous system (CNS) and the venom glands. Although, relative to their whole-body mass, we found no significant difference in venom gland volume, the CNS of the ant-mimicking jumping spider was significantly smaller when compared with a relatively closely related non-mimic jumping spider, indicating that some trade-off between mimic accuracy and size of neural anatomy, as articulated by the “selection trade-offs hypothesis,” is a possibility. Our explorative evidence enables and encourages broader investigation of how variable mimic accuracy impacts the neuroanatomy in ant mimics as a direct test of the “selection trade-offs hypothesis.”
期刊介绍:
Established in 1891, JCN is the oldest continually published basic neuroscience journal. Historically, as the name suggests, the journal focused on a comparison among species to uncover the intricacies of how the brain functions. In modern times, this research is called systems neuroscience where animal models are used to mimic core cognitive processes with the ultimate goal of understanding neural circuits and connections that give rise to behavioral patterns and different neural states.
Research published in JCN covers all species from invertebrates to humans, and the reports inform the readers about the function and organization of nervous systems in species with an emphasis on the way that species adaptations inform about the function or organization of the nervous systems, rather than on their evolution per se.
JCN publishes primary research articles and critical commentaries and review-type articles offering expert insight in to cutting edge research in the field of systems neuroscience; a complete list of contribution types is given in the Author Guidelines. For primary research contributions, only full-length investigative reports are desired; the journal does not accept short communications.