Raphaël Saporta, Elisabet I Nielsen, Jon U Hansen, Edgars Liepinsh, Iris K Minichmayr, Lena E Friberg
{"title":"PK/PD modelling and simulation of longitudinal meropenem in vivo effects against Escherichia coli and Klebsiella pneumoniae strains with high MICs.","authors":"Raphaël Saporta, Elisabet I Nielsen, Jon U Hansen, Edgars Liepinsh, Iris K Minichmayr, Lena E Friberg","doi":"10.1016/j.ijantimicag.2024.107389","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Carbapenem-resistant bacteria pose a threat to public health. Characterising the pharmacokinetics-pharmacodynamics (PKPD) of meropenem longitudinally in vivo against resistant bacteria could provide valuable information for development and translation of carbapenem-based therapies.</p><p><strong>Objectives: </strong>To assess the time course of meropenem effects in vivo against strains with high MIC to predict PK/PD indices and expected efficacy in patients using a modelling approach.</p><p><strong>Methods: </strong>A PKPD model was built on longitudinal bacterial count data to describe meropenem effects against six Escherichia coli and Klebsiella pneumoniae strains (MIC values 32-128 mg/L) in a 24 h mouse thigh infection model. The model was used to derive PK/PD indices from simulated studies in mice and to predict the efficacy of different infusion durations with high-dose meropenem (2 g q8 h/q12 h for normal/reduced kidney function) in patients.</p><p><strong>Results: </strong>Data from 592 mice were available for model development. The estimated meropenem concentration-dependent killing rate was not associated with differences in MIC. The fraction of time that unbound concentrations exceeded EC<sub>50</sub> (fT<sub>>EC50</sub>, EC<sub>50</sub> = 1.01 mg/L) showed higher correlations than fT<sub>>MIC</sub>. For all investigated strains, bacteriostasis at 24 h was predicted for prolonged infusions of high-dose meropenem monotherapy in >90% of patients.</p><p><strong>Conclusions: </strong>The developed PKPD model successfully described bacterial growth and meropenem killing over time in the thigh infection model. For the investigated strains, the MIC, determined in vitro, or MIC-based PK/PD indices, did not predict in vivo response. Simulations suggested prolonged infusions of high-dose meropenem to be efficacious in patients infected by the studied strains.</p>","PeriodicalId":13818,"journal":{"name":"International Journal of Antimicrobial Agents","volume":" ","pages":"107389"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Antimicrobial Agents","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ijantimicag.2024.107389","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Carbapenem-resistant bacteria pose a threat to public health. Characterising the pharmacokinetics-pharmacodynamics (PKPD) of meropenem longitudinally in vivo against resistant bacteria could provide valuable information for development and translation of carbapenem-based therapies.
Objectives: To assess the time course of meropenem effects in vivo against strains with high MIC to predict PK/PD indices and expected efficacy in patients using a modelling approach.
Methods: A PKPD model was built on longitudinal bacterial count data to describe meropenem effects against six Escherichia coli and Klebsiella pneumoniae strains (MIC values 32-128 mg/L) in a 24 h mouse thigh infection model. The model was used to derive PK/PD indices from simulated studies in mice and to predict the efficacy of different infusion durations with high-dose meropenem (2 g q8 h/q12 h for normal/reduced kidney function) in patients.
Results: Data from 592 mice were available for model development. The estimated meropenem concentration-dependent killing rate was not associated with differences in MIC. The fraction of time that unbound concentrations exceeded EC50 (fT>EC50, EC50 = 1.01 mg/L) showed higher correlations than fT>MIC. For all investigated strains, bacteriostasis at 24 h was predicted for prolonged infusions of high-dose meropenem monotherapy in >90% of patients.
Conclusions: The developed PKPD model successfully described bacterial growth and meropenem killing over time in the thigh infection model. For the investigated strains, the MIC, determined in vitro, or MIC-based PK/PD indices, did not predict in vivo response. Simulations suggested prolonged infusions of high-dose meropenem to be efficacious in patients infected by the studied strains.
期刊介绍:
The International Journal of Antimicrobial Agents is a peer-reviewed publication offering comprehensive and current reference information on the physical, pharmacological, in vitro, and clinical properties of individual antimicrobial agents, covering antiviral, antiparasitic, antibacterial, and antifungal agents. The journal not only communicates new trends and developments through authoritative review articles but also addresses the critical issue of antimicrobial resistance, both in hospital and community settings. Published content includes solicited reviews by leading experts and high-quality original research papers in the specified fields.