Cyclin-dependent kinase 13 is indispensable for normal mouse heart development.

IF 1.8 3区 医学 Q2 ANATOMY & MORPHOLOGY
Qazi Waheed-Ullah, Anna Wilsdon, Aseel Abbad, Sophie Rochette, Frances Bu'Lock, Asma Ali Saed, Marc-Phillip Hitz, J David Brook, Siobhan Loughna
{"title":"Cyclin-dependent kinase 13 is indispensable for normal mouse heart development.","authors":"Qazi Waheed-Ullah, Anna Wilsdon, Aseel Abbad, Sophie Rochette, Frances Bu'Lock, Asma Ali Saed, Marc-Phillip Hitz, J David Brook, Siobhan Loughna","doi":"10.1111/joa.14175","DOIUrl":null,"url":null,"abstract":"<p><p>Congenital heart disease (CHD) has an incidence of approximately 1%. Over the last decade, sequencing studies including large cohorts of individuals with CHD have begun to unravel the genetic mechanisms underpinning CHD. This includes the identification of variants in cyclin-dependent kinase 13 (CDK13), in individuals with syndromic CHD. CDK13 encodes a serine/threonine protein kinase. The cyclin partner of CDK13 is cyclin K; this complex is thought to be important in transcription and RNA processing. Pathogenic variants in CDK13 cause CDK13-related disorder in humans, characterised by intellectual disability and developmental delay, recognisable facial features, feeding difficulties and structural brain defects, with 35% of individuals having CHD. To obtain a greater understanding for the role that this essential protein kinase plays in embryonic heart development, we have analysed a presumed loss of function Cdk13 transgenic mouse model (Cdk13<sup>tm1b</sup>). The homozygous mutants were embryonically lethal in most cases by E15.5. X-gal staining showed Cdk13 expression localised to developing facial regions, heart and surrounding areas at E10.5, whereas at E12.5, it was more widely present. In the E15.5 heart, staining was seen throughout. RT-qPCR showed significant reduction in Cdk13 transcript expression in homozygous compared with WT and heterozygous hearts at E10.5 and E12.5. Detailed morphological 3D analysis of embryonic and postnatal hearts was performed using high-resolution episcopic microscopy, which affords a more detailed analysis of structures such as cardiac valve leaflets and endocardial cushions, compared with more traditional histological techniques. We show that both the homozygous and heterozygous Cdk13<sup>tm1b</sup> mutants exhibit a range of CHD, including ventricular septal defects, bicuspid aortic valve, double outlet right ventricle and atrioventricular septal defects. 100% (n = 4) of homozygous hearts displayed CHD. Differential expression was seen in Cdk13<sup>tm1b</sup> homozygous mutants for two genes known to be necessary for normal heart development. The types of defects, and the presence of CHD in heterozygous mice (17.02%, n = 8/47), are consistent with the CDK13-related disorder phenotype in humans. This study provides important insights into the effects of reduced function of CDK13 in the mouse heart and contributes to our understanding of the mechanism behind this disorder as a cause of CHD.</p>","PeriodicalId":14971,"journal":{"name":"Journal of Anatomy","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Anatomy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/joa.14175","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Congenital heart disease (CHD) has an incidence of approximately 1%. Over the last decade, sequencing studies including large cohorts of individuals with CHD have begun to unravel the genetic mechanisms underpinning CHD. This includes the identification of variants in cyclin-dependent kinase 13 (CDK13), in individuals with syndromic CHD. CDK13 encodes a serine/threonine protein kinase. The cyclin partner of CDK13 is cyclin K; this complex is thought to be important in transcription and RNA processing. Pathogenic variants in CDK13 cause CDK13-related disorder in humans, characterised by intellectual disability and developmental delay, recognisable facial features, feeding difficulties and structural brain defects, with 35% of individuals having CHD. To obtain a greater understanding for the role that this essential protein kinase plays in embryonic heart development, we have analysed a presumed loss of function Cdk13 transgenic mouse model (Cdk13tm1b). The homozygous mutants were embryonically lethal in most cases by E15.5. X-gal staining showed Cdk13 expression localised to developing facial regions, heart and surrounding areas at E10.5, whereas at E12.5, it was more widely present. In the E15.5 heart, staining was seen throughout. RT-qPCR showed significant reduction in Cdk13 transcript expression in homozygous compared with WT and heterozygous hearts at E10.5 and E12.5. Detailed morphological 3D analysis of embryonic and postnatal hearts was performed using high-resolution episcopic microscopy, which affords a more detailed analysis of structures such as cardiac valve leaflets and endocardial cushions, compared with more traditional histological techniques. We show that both the homozygous and heterozygous Cdk13tm1b mutants exhibit a range of CHD, including ventricular septal defects, bicuspid aortic valve, double outlet right ventricle and atrioventricular septal defects. 100% (n = 4) of homozygous hearts displayed CHD. Differential expression was seen in Cdk13tm1b homozygous mutants for two genes known to be necessary for normal heart development. The types of defects, and the presence of CHD in heterozygous mice (17.02%, n = 8/47), are consistent with the CDK13-related disorder phenotype in humans. This study provides important insights into the effects of reduced function of CDK13 in the mouse heart and contributes to our understanding of the mechanism behind this disorder as a cause of CHD.

细胞周期蛋白依赖性激酶13对小鼠心脏的正常发育不可或缺。
先天性心脏病(CHD)的发病率约为 1%。在过去十年中,包括大量先天性心脏病患者在内的测序研究已开始揭示先天性心脏病的遗传机制。其中包括在综合征先天性心脏病患者中发现细胞周期蛋白依赖性激酶 13 (CDK13) 的变异。CDK13 编码一种丝氨酸/苏氨酸蛋白激酶。CDK13 的细胞周期蛋白伙伴是细胞周期蛋白 K;这一复合物被认为在转录和 RNA 处理中起着重要作用。CDK13 中的致病变体会导致人类 CDK13 相关疾病,其特征是智力障碍和发育迟缓、可识别的面部特征、喂养困难和脑结构缺陷,其中 35% 的个体患有先天性心脏病。为了更深入地了解这种重要蛋白激酶在胚胎心脏发育中所起的作用,我们分析了一种假定功能缺失的 Cdk13 转基因小鼠模型(Cdk13tm1b)。在大多数情况下,同源突变体在 E15.5 胚胎期死亡。X-gal 染色显示,在 E10.5 阶段,Cdk13 的表达定位于发育中的面部区域、心脏和周围区域,而在 E12.5 阶段,Cdk13 的表达则更为广泛。在 E15.5 期的心脏中,染色遍布整个区域。RT-qPCR显示,在E10.5和E12.5期,同卵心脏的Cdk13转录物表达量明显低于WT和杂合子心脏。使用高分辨率外显微镜对胚胎和出生后的心脏进行了详细的形态学三维分析,与更传统的组织学技术相比,该技术能对心脏瓣叶和心内膜垫等结构进行更详细的分析。我们发现,同卵和异卵 Cdk13tm1b 突变体都表现出一系列的先天性心脏病,包括室间隔缺损、主动脉瓣双瓣、右心室双出口和房室间隔缺损。100%(n = 4)的同基因心脏显示出 CHD。在 Cdk13tm1b 基因同源突变体中,已知正常心脏发育所需的两个基因出现了差异表达。这些缺陷的类型以及杂合子小鼠(17.02%,n = 8/47)中出现的先天性心脏病与人类 CDK13 相关疾病的表型一致。这项研究为我们深入了解 CDK13 功能减退对小鼠心脏的影响提供了重要依据,并有助于我们了解这种疾病导致先天性心脏病的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Anatomy
Journal of Anatomy 医学-解剖学与形态学
CiteScore
4.80
自引率
8.30%
发文量
183
审稿时长
4-8 weeks
期刊介绍: Journal of Anatomy is an international peer-reviewed journal sponsored by the Anatomical Society. The journal publishes original papers, invited review articles and book reviews. Its main focus is to understand anatomy through an analysis of structure, function, development and evolution. Priority will be given to studies of that clearly articulate their relevance to the anatomical community. Focal areas include: experimental studies, contributions based on molecular and cell biology and on the application of modern imaging techniques and papers with novel methods or synthetic perspective on an anatomical system. Studies that are essentially descriptive anatomy are appropriate only if they communicate clearly a broader functional or evolutionary significance. You must clearly state the broader implications of your work in the abstract. We particularly welcome submissions in the following areas: Cell biology and tissue architecture Comparative functional morphology Developmental biology Evolutionary developmental biology Evolutionary morphology Functional human anatomy Integrative vertebrate paleontology Methodological innovations in anatomical research Musculoskeletal system Neuroanatomy and neurodegeneration Significant advances in anatomical education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信