Oral administration of Porphyromonas gingivalis to mice with diet-induced obesity impairs cognitive function associated with microglial activation in the brain.
{"title":"Oral administration of <i>Porphyromonas gingivalis</i> to mice with diet-induced obesity impairs cognitive function associated with microglial activation in the brain.","authors":"Kana Oue, Yosuke Yamawaki, Kazuhisa Ouhara, Eiji Imado, Tetsuya Tamura, Mitsuru Doi, Yoshitaka Shimizu, Mitsuhiro Yoshida, Noriyoshi Mizuno, Norimitsu Morioka, Takashi Kanematsu, Masahiro Irifune, Yukio Ago","doi":"10.1080/20002297.2024.2419155","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Both periodontal disease and obesity are risk factors for dementia, but their links to 1brain function remain unclear. In this study, we examined the effects of oral infection with a periodontal pathogen on cognitive function in a mouse model of obesity, focusing on the roles of microglia.</p><p><strong>Methods: </strong>To create a mouse model of diet-induced obesity and periodontitis, male C57BL/6 J mice were first fed a high-fat diet containing 60% lipid calories for 18 weeks, beginning at 12 weeks of age, to achieve diet-induced obesity. Then, <i>Porphyromonas gingivalis</i> administration in the oral cavity twice weekly for 6 weeks was performed to induce periodontitis in obese mice.</p><p><strong>Results: </strong>Obese mice orally exposed to <i>P. gingivalis</i> showed cognitive impairment in the novel object recognition test. Increased expression levels of inflammatory cytokines (e.g. interleukin-1β and tumor necrosis factor-α) were observed in the hippocampus of <i>P. gingivalis</i>-treated obese mice. Immunohistochemical analysis revealed that microglia cell body size was increased in the hippocampus and prefrontal cortex of <i>P. gingivalis</i>-treated obese mice, indicating microglial activation. Furthermore, depletion of microglia by PLX3397, a colony-stimulating factor 1 receptor inhibitor, ameliorated cognitive dysfunction.</p><p><strong>Conclusion: </strong>These results suggest that microglia mediate periodontal infection-induced cognitive dysfunction in obesity.</p>","PeriodicalId":16598,"journal":{"name":"Journal of Oral Microbiology","volume":"16 1","pages":"2419155"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565673/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Oral Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/20002297.2024.2419155","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Both periodontal disease and obesity are risk factors for dementia, but their links to 1brain function remain unclear. In this study, we examined the effects of oral infection with a periodontal pathogen on cognitive function in a mouse model of obesity, focusing on the roles of microglia.
Methods: To create a mouse model of diet-induced obesity and periodontitis, male C57BL/6 J mice were first fed a high-fat diet containing 60% lipid calories for 18 weeks, beginning at 12 weeks of age, to achieve diet-induced obesity. Then, Porphyromonas gingivalis administration in the oral cavity twice weekly for 6 weeks was performed to induce periodontitis in obese mice.
Results: Obese mice orally exposed to P. gingivalis showed cognitive impairment in the novel object recognition test. Increased expression levels of inflammatory cytokines (e.g. interleukin-1β and tumor necrosis factor-α) were observed in the hippocampus of P. gingivalis-treated obese mice. Immunohistochemical analysis revealed that microglia cell body size was increased in the hippocampus and prefrontal cortex of P. gingivalis-treated obese mice, indicating microglial activation. Furthermore, depletion of microglia by PLX3397, a colony-stimulating factor 1 receptor inhibitor, ameliorated cognitive dysfunction.
Conclusion: These results suggest that microglia mediate periodontal infection-induced cognitive dysfunction in obesity.
期刊介绍:
As the first Open Access journal in its field, the Journal of Oral Microbiology aims to be an influential source of knowledge on the aetiological agents behind oral infectious diseases. The journal is an international forum for original research on all aspects of ''oral health''. Articles which seek to understand ''oral health'' through exploration of the pathogenesis, virulence, host-parasite interactions, and immunology of oral infections are of particular interest. However, the journal also welcomes work that addresses the global agenda of oral infectious diseases and articles that present new strategies for treatment and prevention or improvements to existing strategies.
Topics: ''oral health'', microbiome, genomics, host-pathogen interactions, oral infections, aetiologic agents, pathogenesis, molecular microbiology systemic diseases, ecology/environmental microbiology, treatment, diagnostics, epidemiology, basic oral microbiology, and taxonomy/systematics.
Article types: original articles, notes, review articles, mini-reviews and commentaries