Application and Prospects of Deep Learning Technology in Fracture Diagnosis.

IF 2 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL
Jia-Yao Zhang, Jia-Ming Yang, Xin-Meng Wang, Hong-Lin Wang, Hong Zhou, Zi-Neng Yan, Yi Xie, Peng-Ran Liu, Zhi-Wei Hao, Zhe-Wei Ye
{"title":"Application and Prospects of Deep Learning Technology in Fracture Diagnosis.","authors":"Jia-Yao Zhang, Jia-Ming Yang, Xin-Meng Wang, Hong-Lin Wang, Hong Zhou, Zi-Neng Yan, Yi Xie, Peng-Ran Liu, Zhi-Wei Hao, Zhe-Wei Ye","doi":"10.1007/s11596-024-2928-5","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) is an interdisciplinary field that combines computer technology, mathematics, and several other fields. Recently, with the rapid development of machine learning (ML) and deep learning (DL), significant progress has been made in the field of AI. As one of the fastest-growing branches, DL can effectively extract features from big data and optimize the performance of various tasks. Moreover, with advancements in digital imaging technology, DL has become a key tool for processing high-dimensional medical image data and conducting medical image analysis in clinical applications. With the development of this technology, the diagnosis of orthopedic diseases has undergone significant changes. In this review, we describe recent research progress on DL in fracture diagnosis and discuss the value of DL in this field, providing a reference for better integration and development of DL technology in orthopedics.</p>","PeriodicalId":10820,"journal":{"name":"Current Medical Science","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Medical Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11596-024-2928-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) is an interdisciplinary field that combines computer technology, mathematics, and several other fields. Recently, with the rapid development of machine learning (ML) and deep learning (DL), significant progress has been made in the field of AI. As one of the fastest-growing branches, DL can effectively extract features from big data and optimize the performance of various tasks. Moreover, with advancements in digital imaging technology, DL has become a key tool for processing high-dimensional medical image data and conducting medical image analysis in clinical applications. With the development of this technology, the diagnosis of orthopedic diseases has undergone significant changes. In this review, we describe recent research progress on DL in fracture diagnosis and discuss the value of DL in this field, providing a reference for better integration and development of DL technology in orthopedics.

深度学习技术在骨折诊断中的应用与前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Medical Science
Current Medical Science Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
4.70
自引率
0.00%
发文量
126
期刊介绍: Current Medical Science provides a forum for peer-reviewed papers in the medical sciences, to promote academic exchange between Chinese researchers and doctors and their foreign counterparts. The journal covers the subjects of biomedicine such as physiology, biochemistry, molecular biology, pharmacology, pathology and pathophysiology, etc., and clinical research, such as surgery, internal medicine, obstetrics and gynecology, pediatrics and otorhinolaryngology etc. The articles appearing in Current Medical Science are mainly in English, with a very small number of its papers in German, to pay tribute to its German founder. This journal is the only medical periodical in Western languages sponsored by an educational institution located in the central part of China.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信