Mai Bay Stie , Dirk Fennema Galparsoro , Xin Zhou , Vito Foderà
{"title":"Disassembly and in vitro cell compatibility of α-lactalbumin particulates under physiologically relevant conditions","authors":"Mai Bay Stie , Dirk Fennema Galparsoro , Xin Zhou , Vito Foderà","doi":"10.1016/j.ejps.2024.106962","DOIUrl":null,"url":null,"abstract":"<div><div>Protein self-assemblies in the form of ordered supramolecular structures such as particulates hold great potential as new biomaterials. However, research in this field is rarely conducted under physiologically relevant conditions but such studies are crucially needed to unravel the potential use of particulates and other amyloid structures in health sciences. In this study, particulates of α-lactalbumin (ALA) were prepared at different stages of maturation by thermal incubation. Disassembly of particulates in isotonic buffer, neutral pH and at 37 °C was investigated by simultaneously measuring Thioflavin T fluorescence intensity and light scattering. Freshly formed particulates quickly disassembled and displayed complete release of soluble ALA within 1 h. Mature particulates displayed slower disassembly kinetics with incomplete release of ALA within 1 h. The biocompatibility of particulates at different maturation stages to epithelial lung and fibroblast cells was assessed <em>in vitro</em>. Good cell compatibility was observed in the presence of the particulates and their released species. Our findings display protein particulates as biodegradable and highly tunable particles, promoting them as good candidates for drug delivery purposes.</div></div>","PeriodicalId":12018,"journal":{"name":"European Journal of Pharmaceutical Sciences","volume":"204 ","pages":"Article 106962"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928098724002756","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Protein self-assemblies in the form of ordered supramolecular structures such as particulates hold great potential as new biomaterials. However, research in this field is rarely conducted under physiologically relevant conditions but such studies are crucially needed to unravel the potential use of particulates and other amyloid structures in health sciences. In this study, particulates of α-lactalbumin (ALA) were prepared at different stages of maturation by thermal incubation. Disassembly of particulates in isotonic buffer, neutral pH and at 37 °C was investigated by simultaneously measuring Thioflavin T fluorescence intensity and light scattering. Freshly formed particulates quickly disassembled and displayed complete release of soluble ALA within 1 h. Mature particulates displayed slower disassembly kinetics with incomplete release of ALA within 1 h. The biocompatibility of particulates at different maturation stages to epithelial lung and fibroblast cells was assessed in vitro. Good cell compatibility was observed in the presence of the particulates and their released species. Our findings display protein particulates as biodegradable and highly tunable particles, promoting them as good candidates for drug delivery purposes.
期刊介绍:
The journal publishes research articles, review articles and scientific commentaries on all aspects of the pharmaceutical sciences with emphasis on conceptual novelty and scientific quality. The Editors welcome articles in this multidisciplinary field, with a focus on topics relevant for drug discovery and development.
More specifically, the Journal publishes reports on medicinal chemistry, pharmacology, drug absorption and metabolism, pharmacokinetics and pharmacodynamics, pharmaceutical and biomedical analysis, drug delivery (including gene delivery), drug targeting, pharmaceutical technology, pharmaceutical biotechnology and clinical drug evaluation. The journal will typically not give priority to manuscripts focusing primarily on organic synthesis, natural products, adaptation of analytical approaches, or discussions pertaining to drug policy making.
Scientific commentaries and review articles are generally by invitation only or by consent of the Editors. Proceedings of scientific meetings may be published as special issues or supplements to the Journal.