Super resolution reconstruction of fluorescence microscopy images by a convolutional network with physical priors.

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Qiangyu Cai, Jun Lu, Wenting Gu, Di Xiao, Boyi Li, Lei Xu, Yuanjie Gu, Biqin Dong, Xin Liu
{"title":"Super resolution reconstruction of fluorescence microscopy images by a convolutional network with physical priors.","authors":"Qiangyu Cai, Jun Lu, Wenting Gu, Di Xiao, Boyi Li, Lei Xu, Yuanjie Gu, Biqin Dong, Xin Liu","doi":"10.1364/BOE.537589","DOIUrl":null,"url":null,"abstract":"<p><p>Super-solution fluorescence microscopy, such as single-molecule localization microscopy (SMLM), is effective in observing subcellular structures and achieving excellent enhancement in spatial resolution in contrast to traditional fluorescence microscopy. Recently, deep learning has demonstrated excellent performance in SMLM in solving the trade-offs between spatiotemporal resolution, phototoxicity, and signal intensity. However, most of these researches rely on sufficient and high-quality datasets. Here, we propose a physical priors-based convolutional super-resolution network (PCSR), which incorporates a physical-based loss term and an initial optimization process based on the Wiener filter to create excellent super-resolution images directly using low-resolution images. The experimental results demonstrate that PCSR enables the achievement of a fast reconstruction time of 100 ms and a high spatial resolution of 10 nm by training on a limited dataset, allowing subcellular research with high spatiotemporal resolution, low cell phototoxic illumination, and high accessibility. In addition, the generalizability of PCSR to different live cell structures makes it a practical instrument for diverse cell research.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"15 11","pages":"6638-6653"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563314/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.537589","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Super-solution fluorescence microscopy, such as single-molecule localization microscopy (SMLM), is effective in observing subcellular structures and achieving excellent enhancement in spatial resolution in contrast to traditional fluorescence microscopy. Recently, deep learning has demonstrated excellent performance in SMLM in solving the trade-offs between spatiotemporal resolution, phototoxicity, and signal intensity. However, most of these researches rely on sufficient and high-quality datasets. Here, we propose a physical priors-based convolutional super-resolution network (PCSR), which incorporates a physical-based loss term and an initial optimization process based on the Wiener filter to create excellent super-resolution images directly using low-resolution images. The experimental results demonstrate that PCSR enables the achievement of a fast reconstruction time of 100 ms and a high spatial resolution of 10 nm by training on a limited dataset, allowing subcellular research with high spatiotemporal resolution, low cell phototoxic illumination, and high accessibility. In addition, the generalizability of PCSR to different live cell structures makes it a practical instrument for diverse cell research.

利用具有物理先验的卷积网络对荧光显微镜图像进行超分辨率重建。
超分辨率荧光显微技术,如单分子定位显微技术(SMLM),与传统荧光显微技术相比,能有效地观察亚细胞结构,并在空间分辨率方面实现出色的提升。最近,深度学习在 SMLM 中解决时空分辨率、光毒性和信号强度之间的权衡问题方面表现出色。然而,这些研究大多依赖于充足且高质量的数据集。在这里,我们提出了一种基于物理前验的卷积超分辨率网络(PCSR),它结合了基于物理的损失项和基于维纳滤波器的初始优化过程,可直接使用低分辨率图像创建出色的超分辨率图像。实验结果表明,通过在有限的数据集上进行训练,PCSR 能够实现 100 毫秒的快速重建时间和 10 纳米的高空间分辨率,从而实现高时空分辨率、低细胞光毒性照明和高可及性的亚细胞研究。此外,PCSR 对不同活细胞结构的通用性使其成为多种细胞研究的实用仪器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信