Dual-mode OCT/fluorescence system for monitoring the morphology and metabolism of laser-printed 3D full-thickness skin equivalents.

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Biomedical optics express Pub Date : 2024-10-10 eCollection Date: 2024-11-01 DOI:10.1364/BOE.510610
Arooj Khalid, Viktor Dremin, Ayman El-Tamer, Maria Surnina, Celine Lancelot, Edik Rafailov, Sergei Sokolovski
{"title":"Dual-mode OCT/fluorescence system for monitoring the morphology and metabolism of laser-printed 3D full-thickness skin equivalents.","authors":"Arooj Khalid, Viktor Dremin, Ayman El-Tamer, Maria Surnina, Celine Lancelot, Edik Rafailov, Sergei Sokolovski","doi":"10.1364/BOE.510610","DOIUrl":null,"url":null,"abstract":"<p><p>The 3D structure of native human skin is fundamental for studying skin health, diseases, wound healing, and for testing the safety of skin care products, as well as personalized treatments for skin conditions. Tissue regeneration, driven by tissue engineering, often involves creating full-thickness skin equivalents (FSE), which are widely used for developing both healthy and diseased skin models. In this study, we utilized human skin cell lines to create FSE. We designed high-resolution 3D scaffolds to support the growth and maturation of these skin models. Additionally, we developed and validated a cost-effective, custom-built system combining fluorescence spectroscopy (FS) and optical coherence tomography (OCT) for non-destructive analysis of the metabolism and morphology of 3D FSEs. This system proved highly sensitive in detecting fluorescence from key metabolic co-enzymes (NADH and FAD) in solutions and cell suspensions, while OCT provided adequate resolution to observe the morphology of FSEs. As a result, both the 3D FSE model and the dual-mode optical system hold significant potential for use in 3D bioprinting of biological tissues, as well as in the development of cosmetics, drugs, and in monitoring their maturation over time.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"15 11","pages":"6299-6312"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563319/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.510610","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The 3D structure of native human skin is fundamental for studying skin health, diseases, wound healing, and for testing the safety of skin care products, as well as personalized treatments for skin conditions. Tissue regeneration, driven by tissue engineering, often involves creating full-thickness skin equivalents (FSE), which are widely used for developing both healthy and diseased skin models. In this study, we utilized human skin cell lines to create FSE. We designed high-resolution 3D scaffolds to support the growth and maturation of these skin models. Additionally, we developed and validated a cost-effective, custom-built system combining fluorescence spectroscopy (FS) and optical coherence tomography (OCT) for non-destructive analysis of the metabolism and morphology of 3D FSEs. This system proved highly sensitive in detecting fluorescence from key metabolic co-enzymes (NADH and FAD) in solutions and cell suspensions, while OCT provided adequate resolution to observe the morphology of FSEs. As a result, both the 3D FSE model and the dual-mode optical system hold significant potential for use in 3D bioprinting of biological tissues, as well as in the development of cosmetics, drugs, and in monitoring their maturation over time.

用于监测激光打印三维全厚皮肤等效物形态和新陈代谢的双模 OCT/荧光系统。
原生人体皮肤的三维结构是研究皮肤健康、疾病、伤口愈合、测试护肤品安全性以及皮肤病个性化治疗的基础。在组织工程学的推动下,组织再生通常涉及创建全厚皮肤等效物(FSE),这种等效物被广泛用于开发健康和疾病皮肤模型。在这项研究中,我们利用人体皮肤细胞系来创建 FSE。我们设计了高分辨率三维支架来支持这些皮肤模型的生长和成熟。此外,我们还开发并验证了一种具有成本效益的定制系统,该系统结合了荧光光谱(FS)和光学相干断层扫描(OCT)技术,可对三维 FSE 的新陈代谢和形态进行无损分析。事实证明,该系统在检测溶液和细胞悬浮液中关键代谢辅酶(NADH 和 FAD)的荧光方面具有很高的灵敏度,而 OCT 则为观察 FSE 的形态提供了足够的分辨率。因此,三维 FSE 模型和双模光学系统在生物组织的三维生物打印、化妆品和药物的开发以及随着时间推移对其成熟度的监测方面都具有巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信