Sally A Helmy, Heba M ElBedaiwy, Soha Am Helmy, Rama A Alamri, Renad Mh Alhusayni, Ibtihal Ay Almashhadi, Aryam Sg Alharbi, Shouq Ad Alharbi, Alaa A Ahmed-Anwar, Mahmoud A Mohamed
{"title":"Green HPLC method for determination of paracetamol and ibuprofen in human plasma: applications to pharmacokinetics.","authors":"Sally A Helmy, Heba M ElBedaiwy, Soha Am Helmy, Rama A Alamri, Renad Mh Alhusayni, Ibtihal Ay Almashhadi, Aryam Sg Alharbi, Shouq Ad Alharbi, Alaa A Ahmed-Anwar, Mahmoud A Mohamed","doi":"10.1080/17576180.2024.2421704","DOIUrl":null,"url":null,"abstract":"<p><p>Using a straightforward, sensitive and precise liquid chromatographic approach, it is now possible to concurrently measure the amounts of ibuprofen (IBU) and paracetamol (PAR) in human plasma. A µ BondapakTM C18 column (300 mm × 3.9 mm, 15-20 μm) demonstrated acceptable separation when utilizing a mobile phase of 10 mM disodium hydrogen orthophosphate solution and acetonitrile at an 80:20, v/v ratio. The elution was isocratic at room temperature and a flow rate of 1.0 milliliters per minute. The UV detector was set to monitor PAR and IS (tinidazole) for 6.5 min at 254 nm, then IBU for the next 3 min at 220 nm. PAR and IBU showed linearity across the 0.05 to 100 µg/ml concentration range. The precision of the measurements ranged from 98.5% to 105% for PAR and from 95.1% to 102.8% for IBU. The average drug recovery rate was 100% for PAR and 98.9% for IBU. This method was effectively utilized to assess samples from an actual population administered PAR and IBU (325/200 mg) for pharmacokinetic research. The technique employs green and white tools to evaluate their environmental sustainability and efficacy. The suggested strategy was implemented utilizing the Six Sigma method.</p>","PeriodicalId":8797,"journal":{"name":"Bioanalysis","volume":" ","pages":"1-12"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioanalysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17576180.2024.2421704","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Using a straightforward, sensitive and precise liquid chromatographic approach, it is now possible to concurrently measure the amounts of ibuprofen (IBU) and paracetamol (PAR) in human plasma. A µ BondapakTM C18 column (300 mm × 3.9 mm, 15-20 μm) demonstrated acceptable separation when utilizing a mobile phase of 10 mM disodium hydrogen orthophosphate solution and acetonitrile at an 80:20, v/v ratio. The elution was isocratic at room temperature and a flow rate of 1.0 milliliters per minute. The UV detector was set to monitor PAR and IS (tinidazole) for 6.5 min at 254 nm, then IBU for the next 3 min at 220 nm. PAR and IBU showed linearity across the 0.05 to 100 µg/ml concentration range. The precision of the measurements ranged from 98.5% to 105% for PAR and from 95.1% to 102.8% for IBU. The average drug recovery rate was 100% for PAR and 98.9% for IBU. This method was effectively utilized to assess samples from an actual population administered PAR and IBU (325/200 mg) for pharmacokinetic research. The technique employs green and white tools to evaluate their environmental sustainability and efficacy. The suggested strategy was implemented utilizing the Six Sigma method.
BioanalysisBIOCHEMICAL RESEARCH METHODS-CHEMISTRY, ANALYTICAL
CiteScore
3.30
自引率
16.70%
发文量
88
审稿时长
2 months
期刊介绍:
Reliable data obtained from selective, sensitive and reproducible analysis of xenobiotics and biotics in biological samples is a fundamental and crucial part of every successful drug development program. The same principles can also apply to many other areas of research such as forensic science, toxicology and sports doping testing.
The bioanalytical field incorporates sophisticated techniques linking sample preparation and advanced separations with MS and NMR detection systems, automation and robotics. Standards set by regulatory bodies regarding method development and validation increasingly define the boundaries between speed and quality.
Bioanalysis is a progressive discipline for which the future holds many exciting opportunities to further reduce sample volumes, analysis cost and environmental impact, as well as to improve sensitivity, specificity, accuracy, efficiency, assay throughput, data quality, data handling and processing.
The journal Bioanalysis focuses on the techniques and methods used for the detection or quantitative study of analytes in human or animal biological samples. Bioanalysis encourages the submission of articles describing forward-looking applications, including biosensors, microfluidics, miniaturized analytical devices, and new hyphenated and multi-dimensional techniques.
Bioanalysis delivers essential information in concise, at-a-glance article formats. Key advances in the field are reported and analyzed by international experts, providing an authoritative but accessible forum for the modern bioanalyst.