{"title":"The 40-Hz White Light Emitting Diode to Alleviate Psychiatric Symptoms Induced by Streptozotocin In Vivo.","authors":"Elham Soleimani, Abolhassan Ahmadiani, Maryam Bazrgar, Fariba Khodagholi, Afsaneh Eliassi","doi":"10.32598/bcn.2024.1856.1","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>A 40-Hz white light emitting diode (WLED) has emerged as an alternative nonpharmacological and noninvasive approach to Alzheimer disease (AD). Here, we investigated the therapeutic effects of 40-Hz WLED on psychiatric symptoms (PS) and the contribution of mitochondrial factors in the early stages of sporadic AD (sAD) in rats.</p><p><strong>Methods: </strong>In male Wistar rats, the AD model was induced via intracerebroventricular (ICV) injection of streptozotocin (STZ). After recovering (7 days) from stereotaxic surgery, 40-Hz WLED exposure was performed for 7 consecutive days lasting 15 min/d. Behavioral (elevated plus maze (EPM), force swim test, and social interaction test), enzymatic, and molecular assays were conducted 24 hours after the last 40-Hz WLED exposure.</p><p><strong>Results: </strong>Behavioral tasks revealed that 40-Hz WLED exposure in STZ-induced toxicity rats lowered anxiety and depression and increased social interaction. Furthermore, the 40-Hz WLED therapy in STZ-induced toxicity rats increased catalase (CAT) activity in the amygdala, decreased the activity of monoamine oxidases A and B in the whole brain, and increased mitochondrial DNA in the hippocampus.</p><p><strong>Conclusion: </strong>The current study supports that 40-Hz WLED therapy improved PS and biomarkers in the early stages of sAD. Also, a potential relationship between PS and alterations in mitochondrial markers in certain brain regions seems to exist.</p>","PeriodicalId":8701,"journal":{"name":"Basic and Clinical Neuroscience","volume":"15 4","pages":"463-476"},"PeriodicalIF":1.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565670/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic and Clinical Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32598/bcn.2024.1856.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: A 40-Hz white light emitting diode (WLED) has emerged as an alternative nonpharmacological and noninvasive approach to Alzheimer disease (AD). Here, we investigated the therapeutic effects of 40-Hz WLED on psychiatric symptoms (PS) and the contribution of mitochondrial factors in the early stages of sporadic AD (sAD) in rats.
Methods: In male Wistar rats, the AD model was induced via intracerebroventricular (ICV) injection of streptozotocin (STZ). After recovering (7 days) from stereotaxic surgery, 40-Hz WLED exposure was performed for 7 consecutive days lasting 15 min/d. Behavioral (elevated plus maze (EPM), force swim test, and social interaction test), enzymatic, and molecular assays were conducted 24 hours after the last 40-Hz WLED exposure.
Results: Behavioral tasks revealed that 40-Hz WLED exposure in STZ-induced toxicity rats lowered anxiety and depression and increased social interaction. Furthermore, the 40-Hz WLED therapy in STZ-induced toxicity rats increased catalase (CAT) activity in the amygdala, decreased the activity of monoamine oxidases A and B in the whole brain, and increased mitochondrial DNA in the hippocampus.
Conclusion: The current study supports that 40-Hz WLED therapy improved PS and biomarkers in the early stages of sAD. Also, a potential relationship between PS and alterations in mitochondrial markers in certain brain regions seems to exist.
期刊介绍:
BCN is an international multidisciplinary journal that publishes editorials, original full-length research articles, short communications, reviews, methodological papers, commentaries, perspectives and “news and reports” in the broad fields of developmental, molecular, cellular, system, computational, behavioral, cognitive, and clinical neuroscience. No area in the neural related sciences is excluded from consideration, although priority is given to studies that provide applied insights into the functioning of the nervous system. BCN aims to advance our understanding of organization and function of the nervous system in health and disease, thereby improving the diagnosis and treatment of neural-related disorders. Manuscripts submitted to BCN should describe novel results generated by experiments that were guided by clearly defined aims or hypotheses. BCN aims to provide serious ties in interdisciplinary communication, accessibility to a broad readership inside Iran and the region and also in all other international academic sites, effective peer review process, and independence from all possible non-scientific interests. BCN also tries to empower national, regional and international collaborative networks in the field of neuroscience in Iran, Middle East, Central Asia and North Africa and to be the voice of the Iranian and regional neuroscience community in the world of neuroscientists. In this way, the journal encourages submission of editorials, review papers, commentaries, methodological notes and perspectives that address this scope.