Rational design of lanosterol 14α-demethylase for ergosterol biosynthesis in Saccharomyces cerevisiae.

IF 2.6 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
3 Biotech Pub Date : 2024-12-01 Epub Date: 2024-11-15 DOI:10.1007/s13205-024-04136-x
Ruixue Liang, Kangjie Xu, Xinglong Wang, Wenqian Wei, Qihang Chen, Zhijie Qin, Weizhu Zeng, Jingwen Zhou
{"title":"Rational design of lanosterol 14α-demethylase for ergosterol biosynthesis in <i>Saccharomyces cerevisiae</i>.","authors":"Ruixue Liang, Kangjie Xu, Xinglong Wang, Wenqian Wei, Qihang Chen, Zhijie Qin, Weizhu Zeng, Jingwen Zhou","doi":"10.1007/s13205-024-04136-x","DOIUrl":null,"url":null,"abstract":"<p><p>Ergosterol is widely used in skin care products and drug preparation. Lanosterol 14α-demethylase (Erg11p, 14DM, CYP51) is the rate-limiting enzyme for the biosynthesis of various steroid compounds in <i>Saccharomyces cerevisiae</i>. Herein, Erg11p was engineered to extend the in vivo catalytic half-life and increase the turnover rate. Single mutations resulting in lower folding energy were selected, and mutant P201H had an ergosterol yield of 576.9 mg·L<sup>-1</sup>. Through consensus design, single mutations resulting in higher sequence identity to homologs were tested and mutant K352L had an ergosterol yield of 677.9 mg·L<sup>-1</sup>. The key residues for substrate binding were confirmed via alanine scanning mutagenesis and mutant F384A had an ergosterol yield of 657.8 mg·L<sup>-1</sup>. Molecular dynamics (MD) simulation was conducted to investigate the contributions of pocket residues and eight residues were found to engage in weak interactions with lanosterol. Saturation mutagenesis was applied to these residues to enhance binding to lanosterol, and mutant F384E had an ergosterol yield of 733.8 mg·L<sup>-1</sup>. Meanwhile, MD simulations were conducted to assess the impact of mutant F384E on enzyme activity. The results consistently showed that single point mutation F384E had the greatest effect, outperforming the combination mutations. Batch fermentation increased the ergosterol yield of mutant F384E to 3067.5 mg·L<sup>-1</sup>, the highest reported to date. The successful engineering of Erg11p may pave the way for industrial-scale production of ergosterol and other steroids.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13205-024-04136-x.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"14 12","pages":"300"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564469/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-024-04136-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ergosterol is widely used in skin care products and drug preparation. Lanosterol 14α-demethylase (Erg11p, 14DM, CYP51) is the rate-limiting enzyme for the biosynthesis of various steroid compounds in Saccharomyces cerevisiae. Herein, Erg11p was engineered to extend the in vivo catalytic half-life and increase the turnover rate. Single mutations resulting in lower folding energy were selected, and mutant P201H had an ergosterol yield of 576.9 mg·L-1. Through consensus design, single mutations resulting in higher sequence identity to homologs were tested and mutant K352L had an ergosterol yield of 677.9 mg·L-1. The key residues for substrate binding were confirmed via alanine scanning mutagenesis and mutant F384A had an ergosterol yield of 657.8 mg·L-1. Molecular dynamics (MD) simulation was conducted to investigate the contributions of pocket residues and eight residues were found to engage in weak interactions with lanosterol. Saturation mutagenesis was applied to these residues to enhance binding to lanosterol, and mutant F384E had an ergosterol yield of 733.8 mg·L-1. Meanwhile, MD simulations were conducted to assess the impact of mutant F384E on enzyme activity. The results consistently showed that single point mutation F384E had the greatest effect, outperforming the combination mutations. Batch fermentation increased the ergosterol yield of mutant F384E to 3067.5 mg·L-1, the highest reported to date. The successful engineering of Erg11p may pave the way for industrial-scale production of ergosterol and other steroids.

Supplementary information: The online version contains supplementary material available at 10.1007/s13205-024-04136-x.

合理设计用于麦角甾醇生物合成的羊毛甾醇 14α 去甲基化酶。
麦角甾醇被广泛应用于护肤品和药物制剂中。羊毛甾醇 14α 去甲基化酶(Erg11p,14DM,CYP51)是酿酒酵母(Saccharomyces cerevisiae)中多种甾体化合物生物合成的限速酶。在此,我们对 Erg11p 进行了改造,以延长其体内催化半衰期并提高周转率。突变体 P201H 的麦角甾醇产量为 576.9 mg-L-1。通过共识设计,测试了与同源物序列一致性更高的单突变,突变体 K352L 的麦角甾醇产量为 677.9 mg-L-1。通过丙氨酸扫描突变确认了底物结合的关键残基,突变体 F384A 的麦角固醇产量为 657.8 mg-L-1。分子动力学(MD)模拟研究了口袋残基的贡献,发现有八个残基与羊毛甾醇有微弱的相互作用。对这些残基进行饱和突变以增强与羊毛甾醇的结合,突变体 F384E 的麦角甾醇产量为 733.8 mg-L-1。同时,还进行了 MD 模拟,以评估突变体 F384E 对酶活性的影响。结果一致表明,单点突变 F384E 的影响最大,优于组合突变。批量发酵将突变体 F384E 的麦角甾醇产量提高到 3067.5 mg-L-1,这是迄今为止报道的最高产量。Erg11p 的成功工程化可能会为麦角甾醇和其他类固醇的工业化生产铺平道路:在线版本包含补充材料,可查阅 10.1007/s13205-024-04136-x。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
3 Biotech
3 Biotech Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍: 3 Biotech publishes the results of the latest research related to the study and application of biotechnology to: - Medicine and Biomedical Sciences - Agriculture - The Environment The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信