{"title":"Maternal Genetic Diversity Analysis of Guanling Cattle by Mitochondrial Genome Sequencing.","authors":"Longxin Xu, Xin Wang, Hua Wang, Junda Wu, Wenzhang Zhou, Mengmeng Ni, Kaikai Zhang, Yuanfeng Zhao, Ruiyi Lin","doi":"10.1007/s10528-024-10973-5","DOIUrl":null,"url":null,"abstract":"<p><p>Owing to the unique geography and the isolated environment, Guanling cattle, which is one of five local cattle breeds in Guizhou, China, has developed unique characteristics. The number of pure Guanling cattle decreased markedly because of the hybridization with foreign breeds. In the present study, the maternal genetic diversity of 58 Guanling bulls was assessed by whole mitochondrial genome sequencing. Genetic polymorphisms and phylogenetic analyses classified Guanling cattle into two main lineages, where 43.10% of Guanling cattle were closely related to the foreign breeds and 56.90% displayed distinct features in mitochondrial genomic diversity. PCA analysis further separated Guanling cattle into four populations, one of which was clustered with the foreign breeds. The result of the structure plot and genetic polymorphisms revealed high genetic diversity within two populations that have a long genetic distance from the foreign breeds. Overall, our findings suggest that the whole mitochondrial genome sequencing analysis is a useful and reliable tool to study maternal genetic diversity and to identify the pure population of Guanling cattle. The results will be beneficial to the breeding management of Guanling cattle.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-024-10973-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Owing to the unique geography and the isolated environment, Guanling cattle, which is one of five local cattle breeds in Guizhou, China, has developed unique characteristics. The number of pure Guanling cattle decreased markedly because of the hybridization with foreign breeds. In the present study, the maternal genetic diversity of 58 Guanling bulls was assessed by whole mitochondrial genome sequencing. Genetic polymorphisms and phylogenetic analyses classified Guanling cattle into two main lineages, where 43.10% of Guanling cattle were closely related to the foreign breeds and 56.90% displayed distinct features in mitochondrial genomic diversity. PCA analysis further separated Guanling cattle into four populations, one of which was clustered with the foreign breeds. The result of the structure plot and genetic polymorphisms revealed high genetic diversity within two populations that have a long genetic distance from the foreign breeds. Overall, our findings suggest that the whole mitochondrial genome sequencing analysis is a useful and reliable tool to study maternal genetic diversity and to identify the pure population of Guanling cattle. The results will be beneficial to the breeding management of Guanling cattle.
期刊介绍:
Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses.
Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication.
Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses.
Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods.
Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.