Significant enhancement of the thermal stability and catalytic efficiency of transglutaminase in Streptomyces mobaraensis engineered through the novel S. mobaraensis genomic mutant library construction method GHR/Sml
Fang Yuan , Guoying Li , Zilong Li , Mingming Li , Haiquan Yang , Xiaobin Yu
{"title":"Significant enhancement of the thermal stability and catalytic efficiency of transglutaminase in Streptomyces mobaraensis engineered through the novel S. mobaraensis genomic mutant library construction method GHR/Sml","authors":"Fang Yuan , Guoying Li , Zilong Li , Mingming Li , Haiquan Yang , Xiaobin Yu","doi":"10.1016/j.ijbiomac.2024.137733","DOIUrl":null,"url":null,"abstract":"<div><div>Herein, we developed a novel <em>Streptomyces mobaraensis</em> genomic mutant library construction method, GHR/Sml, to directly and significantly enhance the thermal stability and catalytic efficiency of TGase in the genome of <em>S. mobaraensis</em>. First, 13 key amino acid residues and their mutations for enhanced thermal stability were identified using error-prone PCR and site-directed mutagenesis. Then, the GHR/Sml method was developed to construct a TGase genomic mutant library with 13 mutations. Positive mutants S23Y/Y24N/S250R, S23Y/Y24N/S303K, S23Y/Y24N/K294L, S23Y/Y24N/S199A/R208L, S23Y/Y24N, and S250R were obtained from 1500 total mutants; their half-life values at 50 °C were increased by 9.3-, 9.5-, 8.7-, 9.0-, 6.9-, and 4.8-fold compared with that of TG<sub>LD</sub>, respectively. Furthermore, the <em>k</em><sub>cat</sub>/<em>K</em><sub>m</sub> of mutant S23Y/Y24N/S250R increased by 1.25-fold over that of TG<sub>LD</sub>. The activity of S23Y/Y24N/S250R reached 65.34 U/mL in a 1000-L fermenter, which was the highest activity reported. This novel GHR/Sml method is of great significance for systematically improving properties of additional enzymes in the genome of <em>S. mobaraensis</em>.</div></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"283 ","pages":"Article 137733"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014181302408543X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, we developed a novel Streptomyces mobaraensis genomic mutant library construction method, GHR/Sml, to directly and significantly enhance the thermal stability and catalytic efficiency of TGase in the genome of S. mobaraensis. First, 13 key amino acid residues and their mutations for enhanced thermal stability were identified using error-prone PCR and site-directed mutagenesis. Then, the GHR/Sml method was developed to construct a TGase genomic mutant library with 13 mutations. Positive mutants S23Y/Y24N/S250R, S23Y/Y24N/S303K, S23Y/Y24N/K294L, S23Y/Y24N/S199A/R208L, S23Y/Y24N, and S250R were obtained from 1500 total mutants; their half-life values at 50 °C were increased by 9.3-, 9.5-, 8.7-, 9.0-, 6.9-, and 4.8-fold compared with that of TGLD, respectively. Furthermore, the kcat/Km of mutant S23Y/Y24N/S250R increased by 1.25-fold over that of TGLD. The activity of S23Y/Y24N/S250R reached 65.34 U/mL in a 1000-L fermenter, which was the highest activity reported. This novel GHR/Sml method is of great significance for systematically improving properties of additional enzymes in the genome of S. mobaraensis.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.