{"title":"Self-Powered Broadband Photodetection Ranging from X-ray to UV-Vis Light in a Polar Perovskite Induced by Bulk Photovoltaic Effect.","authors":"Panpan Yu, Shihai You, Xitao Liu, Zeng-Kui Zhu, Ying Zeng, Junhua Luo","doi":"10.1021/acs.jpclett.4c02567","DOIUrl":null,"url":null,"abstract":"<p><p>Self-powered broadband photodetection has evoked increased interest in next-generation photoelectronic devices. However, realizing self-powered broadband photodetection in a single material is still a challenge because of the harsh requirements, including powerful built-in field, excellent charge transport behaviors, as well as the broad absorption. Herein, we first realize broadband photodetection in the range from X-ray to UV-vis light in a polar two-dimensional perovskite (2-FBA)<sub>2</sub>MAPb<sub>2</sub>I<sub>7</sub> (2-FBA = 2-fluorobenzylamine, MA = methylamine) by incorporating an aromatic spacer into a three-dimensional prototype. As a result, (2-FBA)<sub>2</sub>MAPb<sub>2</sub>I<sub>7</sub> exhibited a superior response to UV-vis light (377 to 637 nm) without voltage bias. Specifically, a high switching ratio of 1.05 × 10<sup>4</sup>, an outstanding responsivity (<i>R</i>) of 1420 mA W<sup>-1</sup>, and detectivity (<i>D</i>*) of 1.59 × 10<sup>13</sup> Jones were achieved under light illumination at 520 nm. Moreover, (2-FBA)<sub>2</sub>MAPb<sub>2</sub>I<sub>7</sub> achieved a high sensitivity of 46.4 μC Gy<sup>-1</sup> cm<sup>-2</sup> without voltage bias, two times higher than that of a commercial α-Se film detector (20 μC Gy<sup>-1</sup> cm<sup>-2</sup>). The sensitivity can be further improved to 3316 μC Gy<sup>-1</sup> cm<sup>-2</sup> at a 50 V bias. These results give insight into the design of 2D perovskites for self-powered broadband photodetection.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":" ","pages":"11767-11772"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c02567","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Self-powered broadband photodetection has evoked increased interest in next-generation photoelectronic devices. However, realizing self-powered broadband photodetection in a single material is still a challenge because of the harsh requirements, including powerful built-in field, excellent charge transport behaviors, as well as the broad absorption. Herein, we first realize broadband photodetection in the range from X-ray to UV-vis light in a polar two-dimensional perovskite (2-FBA)2MAPb2I7 (2-FBA = 2-fluorobenzylamine, MA = methylamine) by incorporating an aromatic spacer into a three-dimensional prototype. As a result, (2-FBA)2MAPb2I7 exhibited a superior response to UV-vis light (377 to 637 nm) without voltage bias. Specifically, a high switching ratio of 1.05 × 104, an outstanding responsivity (R) of 1420 mA W-1, and detectivity (D*) of 1.59 × 1013 Jones were achieved under light illumination at 520 nm. Moreover, (2-FBA)2MAPb2I7 achieved a high sensitivity of 46.4 μC Gy-1 cm-2 without voltage bias, two times higher than that of a commercial α-Se film detector (20 μC Gy-1 cm-2). The sensitivity can be further improved to 3316 μC Gy-1 cm-2 at a 50 V bias. These results give insight into the design of 2D perovskites for self-powered broadband photodetection.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.