Cong Gao, Jiamin Zhao, Tao Liu, Bin Luo, Mingchao Chi, Song Zhang, Chenchen Cai, Jinlong Wang, Yanhua Liu, Yuzheng Shao, Guoli Du, Chengrong Qin, Shuangxi Nie
{"title":"Strong and Stable Woody Triboelectric Materials Enabled by Biphase Blocking.","authors":"Cong Gao, Jiamin Zhao, Tao Liu, Bin Luo, Mingchao Chi, Song Zhang, Chenchen Cai, Jinlong Wang, Yanhua Liu, Yuzheng Shao, Guoli Du, Chengrong Qin, Shuangxi Nie","doi":"10.1021/acs.nanolett.4c02802","DOIUrl":null,"url":null,"abstract":"<p><p>Driven by the \"Internet of Everything\" (IoE) vision, the demand for smart materials is growing. Wood, one of the most abundant and renewable resources, has long been a staple in construction and furnishing applications. To further expand its application range, this study developed a high-strength, stable wood-based triboelectric material through a synergistic biphasic mechanism. The in situ growth of flame retardants and the formation of a dense char layer significantly enhanced the fire resistance of the wood-based triboelectric material, reducing the heat release rate (HRR) by 95.4% and total heat release (THR) by 94.2%. The dense laminate structure provided an excellent impact toughness (126 kJ m<sup>-2</sup>). As a smart sensor, the wood-based triboelectric material demonstrated the ability to recognize human motion states and trajectories, exhibiting great potential for applications in smart homes. This study provides valuable insights for exploring the potential applications of wood as a smart material.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":" ","pages":"14932-14940"},"PeriodicalIF":9.6000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c02802","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Driven by the "Internet of Everything" (IoE) vision, the demand for smart materials is growing. Wood, one of the most abundant and renewable resources, has long been a staple in construction and furnishing applications. To further expand its application range, this study developed a high-strength, stable wood-based triboelectric material through a synergistic biphasic mechanism. The in situ growth of flame retardants and the formation of a dense char layer significantly enhanced the fire resistance of the wood-based triboelectric material, reducing the heat release rate (HRR) by 95.4% and total heat release (THR) by 94.2%. The dense laminate structure provided an excellent impact toughness (126 kJ m-2). As a smart sensor, the wood-based triboelectric material demonstrated the ability to recognize human motion states and trajectories, exhibiting great potential for applications in smart homes. This study provides valuable insights for exploring the potential applications of wood as a smart material.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.