{"title":"A small molecule K-3 promotes PDX1 expression and potentiates the differentiation of pluripotent stem cells into insulin-producing pancreatic β cells.","authors":"Tatsuya Yano, Yukihiro Shimaya, Takayuki Enomoto, Toshihiro Kiho, Satoshi Komoriya, Ryutaro Nakashima, Nobuaki Shiraki, Shoen Kume","doi":"10.1093/stmcls/sxae075","DOIUrl":null,"url":null,"abstract":"<p><p>Insulin-producing pancreatic β-like cells derived from human pluripotent stem cells (PSCs) are anticipated as a novel cell source for cell replacement therapy for diabetes patients. Here, we describe the identification of small molecule compounds that promote the differentiation of the PSCs into insulin-producing cells by high throughput screening with a chemical library composed of 55,000 compounds. The initial hit compound K-1 and one derivative K-3 increased the proportion of PSC-derived insulin-positive endocrine cells and their glucose-stimulated insulin secretory (GSIS) functions. K-3 preferentially acts on stage 3 pancreatic progenitor cells and increases the population expressing high levels of PDX1. As a result, the ratios of the PSC-derived PDX1 / NKX6.1 double-positive endocrine progenitor and INS / NKX6.1 double-positive mono-hormonal endocrine cells were increased. K-3 enhances the expression of functional pancreatic β cell markers and affects biological processes concerning organ development. K-3 also increased the yield of endocrine cells at the end of stage 5. The novel compound is a beneficial new tool for efficiently generating PSC-derived insulin-producing cells with high functionality and differentiation efficiency.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"STEM CELLS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stmcls/sxae075","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Insulin-producing pancreatic β-like cells derived from human pluripotent stem cells (PSCs) are anticipated as a novel cell source for cell replacement therapy for diabetes patients. Here, we describe the identification of small molecule compounds that promote the differentiation of the PSCs into insulin-producing cells by high throughput screening with a chemical library composed of 55,000 compounds. The initial hit compound K-1 and one derivative K-3 increased the proportion of PSC-derived insulin-positive endocrine cells and their glucose-stimulated insulin secretory (GSIS) functions. K-3 preferentially acts on stage 3 pancreatic progenitor cells and increases the population expressing high levels of PDX1. As a result, the ratios of the PSC-derived PDX1 / NKX6.1 double-positive endocrine progenitor and INS / NKX6.1 double-positive mono-hormonal endocrine cells were increased. K-3 enhances the expression of functional pancreatic β cell markers and affects biological processes concerning organ development. K-3 also increased the yield of endocrine cells at the end of stage 5. The novel compound is a beneficial new tool for efficiently generating PSC-derived insulin-producing cells with high functionality and differentiation efficiency.
期刊介绍:
STEM CELLS, a peer reviewed journal published monthly, provides a forum for prompt publication of original investigative papers and concise reviews. STEM CELLS is read and written by clinical and basic scientists whose expertise encompasses the rapidly expanding fields of stem and progenitor cell biology.
STEM CELLS covers:
Cancer Stem Cells,
Embryonic Stem Cells/Induced Pluripotent Stem (iPS) Cells,
Regenerative Medicine,
Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics,
Tissue-Specific Stem Cells,
Translational and Clinical Research.