{"title":"Core-Sheath Heterogenous Interlocked Stretchable Conductive Fiber Induced by Adhesive MXene Modulated Interfacial Soldering.","authors":"Zhichao Hou, Yifan He, Lijun Qu, Xueji Zhang, Tingting Fan, Jinlei Miao","doi":"10.1021/acs.nanolett.4c04731","DOIUrl":null,"url":null,"abstract":"<p><p>Whereas high electrical conductivity and mechanical stretchability are both essentially required for flexible electronics, simultaneously achieving them remains a great challenge due to the \"trade-off\" effect. Herein, an ultrastretchable conductor with core-sheath heterogeneous interlocked structure was developed, induced by interfacial soldering silver nanowires (AgNWs) which gradually evolved into elastic conductive fiber. Adhesive polydopamine-functionalized MXene (PDM) was proposed as an interfacial solder to assemble AgNWs along fibers while induced strong cold-welding effect soldered them into superelastic interconnected network. <i>In situ</i> coaxial heterogeneous interlocking between core AgNWs and sheath PDM network gradually formed during the interfacial soldering process, which enables elastic conductor simultaneously owning large mechanical stretchability and high electrical conductivity. Stretchable conductive fiber with core-sheath heterogeneous interlocking structure not only exhibits excellent electrical conductivity (1.13 × 10<sup>5</sup> S/m) but also could maintain stability (Δ<i>R</i>/<i>R</i><sub>0</sub> < 0.19) even under large mechanical deformations (300%). Ultrastretchable fibrous conductor with core-sheath heterogeneous interlocked microstructure induced by adhesive PDM interfacial soldering holds great promise in soft electronics.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04731","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Whereas high electrical conductivity and mechanical stretchability are both essentially required for flexible electronics, simultaneously achieving them remains a great challenge due to the "trade-off" effect. Herein, an ultrastretchable conductor with core-sheath heterogeneous interlocked structure was developed, induced by interfacial soldering silver nanowires (AgNWs) which gradually evolved into elastic conductive fiber. Adhesive polydopamine-functionalized MXene (PDM) was proposed as an interfacial solder to assemble AgNWs along fibers while induced strong cold-welding effect soldered them into superelastic interconnected network. In situ coaxial heterogeneous interlocking between core AgNWs and sheath PDM network gradually formed during the interfacial soldering process, which enables elastic conductor simultaneously owning large mechanical stretchability and high electrical conductivity. Stretchable conductive fiber with core-sheath heterogeneous interlocking structure not only exhibits excellent electrical conductivity (1.13 × 105 S/m) but also could maintain stability (ΔR/R0 < 0.19) even under large mechanical deformations (300%). Ultrastretchable fibrous conductor with core-sheath heterogeneous interlocked microstructure induced by adhesive PDM interfacial soldering holds great promise in soft electronics.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.