{"title":"Activation of Carbonyl Groups in Polyimide-Based Covalent Organic Framework with Multiwalled Carbon Nanotubes toward Boosted Pseudocapacitance.","authors":"Luyi Xiao, Yu Yuan, Wei Ding, Yong Wang, Li-Ping Lv","doi":"10.1021/acs.langmuir.4c03536","DOIUrl":null,"url":null,"abstract":"<p><p>Covalent organic frameworks (COFs) possessing a well-defined structure and abundant functional groups are prospective pseudocapacitive electrode materials. However, their intrinsic poor electrical conductivity and stacking problems usually impede the utilization of their active sites. Herein, we conduct an <i>in situ</i> growth of polyimide COFs (donated as NTDA COFs) enriched with carbonyl groups on multiwalled carbon nanotubes (MWCNTs). An impressive capacitance of 467 F g<sup>-1</sup> at 1 A g<sup>-1</sup> is achieved for the as-prepared NTDA/MWCNTs composite, significantly surpassing both the pure MWCNTs (60.3 F g<sup>-1</sup>) and NTDA COFs (284.4 F g<sup>-1</sup>). No decay of capacitance is observed after 10,000 cycles at 10 A g<sup>-1</sup>. The assembled device NTDA/MWCNTs//activated carbon reaches a high energy density of 17 Wh kg<sup>-1</sup> at 750 W kg<sup>-1</sup> while keeping superior charging/discharging stability of 89.5% after cycling for 19,000 times at 10 A g<sup>-1</sup>. <i>In situ</i> Fourier transform infrared (<i>in situ</i> FT-IR) tests together with the exploration of electrode kinetics show that the boosted capacitance of NTDA/MWCNTs is mainly donated by the redox reactions of carbonyl groups on NTDA COFs, which is largely activated by MWCNTs.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03536","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Covalent organic frameworks (COFs) possessing a well-defined structure and abundant functional groups are prospective pseudocapacitive electrode materials. However, their intrinsic poor electrical conductivity and stacking problems usually impede the utilization of their active sites. Herein, we conduct an in situ growth of polyimide COFs (donated as NTDA COFs) enriched with carbonyl groups on multiwalled carbon nanotubes (MWCNTs). An impressive capacitance of 467 F g-1 at 1 A g-1 is achieved for the as-prepared NTDA/MWCNTs composite, significantly surpassing both the pure MWCNTs (60.3 F g-1) and NTDA COFs (284.4 F g-1). No decay of capacitance is observed after 10,000 cycles at 10 A g-1. The assembled device NTDA/MWCNTs//activated carbon reaches a high energy density of 17 Wh kg-1 at 750 W kg-1 while keeping superior charging/discharging stability of 89.5% after cycling for 19,000 times at 10 A g-1. In situ Fourier transform infrared (in situ FT-IR) tests together with the exploration of electrode kinetics show that the boosted capacitance of NTDA/MWCNTs is mainly donated by the redox reactions of carbonyl groups on NTDA COFs, which is largely activated by MWCNTs.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).