Khaled Al Yaman, Sandy Al Bardawil, Maja Ostojic, Astrid Walrant, François Dolé, Sandrine Vilette, Sophie Lecomte, Isabelle Bestel, Eduard Badarau
{"title":"Tripolar Bolalipids as Key Components of Sustained-Release Drug Delivery Systems.","authors":"Khaled Al Yaman, Sandy Al Bardawil, Maja Ostojic, Astrid Walrant, François Dolé, Sandrine Vilette, Sophie Lecomte, Isabelle Bestel, Eduard Badarau","doi":"10.1021/acs.bioconjchem.4c00385","DOIUrl":null,"url":null,"abstract":"<p><p>Controlling passive diffusion through an amphiphilic membrane is a key factor for the development of future smart generations of drug delivery systems. It also plays a crucial role in understanding fundamental biological systems through the design of new artificial cell models. We report herein a new concept of bolalipids designed as key components for the control of the membrane's permeability. Built on the scaffold of two natural phospholipids connected in the terminal fatty chain region through a polar linker, this specific bola pattern adopts two extreme conformations while self-assembling in water: a bent conformation, responsible for the curvature of the membrane, and an extended conformation, responsible for decreasing the membrane's fluidity. We also designed a bolalipid possessing an ester linker in the lipidic interface that enables stabilization of highly leaky DMPC SUV-liposomes. The nanoparticles were characterized by dynamic light scattering, cryogenic transmission electron microscopy, Fourier transform infrared, differential scanning calorimetry, fluorimetry, and coarse-grained molecular dynamics in order to validate this proof of concept.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry Bioconjugate","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.4c00385","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Controlling passive diffusion through an amphiphilic membrane is a key factor for the development of future smart generations of drug delivery systems. It also plays a crucial role in understanding fundamental biological systems through the design of new artificial cell models. We report herein a new concept of bolalipids designed as key components for the control of the membrane's permeability. Built on the scaffold of two natural phospholipids connected in the terminal fatty chain region through a polar linker, this specific bola pattern adopts two extreme conformations while self-assembling in water: a bent conformation, responsible for the curvature of the membrane, and an extended conformation, responsible for decreasing the membrane's fluidity. We also designed a bolalipid possessing an ester linker in the lipidic interface that enables stabilization of highly leaky DMPC SUV-liposomes. The nanoparticles were characterized by dynamic light scattering, cryogenic transmission electron microscopy, Fourier transform infrared, differential scanning calorimetry, fluorimetry, and coarse-grained molecular dynamics in order to validate this proof of concept.
控制两亲膜的被动扩散是开发未来新一代智能给药系统的关键因素。通过设计新的人工细胞模型,它在理解基本生物系统方面也起着至关重要的作用。我们在此报告一种新概念的栓脂类化合物,它被设计为控制膜渗透性的关键成分。这种特殊的波拉模式建立在两个天然磷脂通过极性连接物在末端脂肪链区域连接起来的支架上,在水中自组装时采用两种极端构象:一种是弯曲构象,负责膜的曲率;另一种是延伸构象,负责降低膜的流动性。我们还设计了一种在脂质界面上具有酯连接物的栓脂,这种栓脂能够稳定高度渗漏的 DMPC SUV 脂质体。我们通过动态光散射、低温透射电子显微镜、傅立叶变换红外线、差示扫描量热法、荧光测定法和粗粒度分子动力学对纳米颗粒进行了表征,以验证这一概念验证。
期刊介绍:
Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.