Realization of Z2 Topological Photonic Insulators Made from Multilayer Transition Metal Dichalcogenides.

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2024-11-26 Epub Date: 2024-11-17 DOI:10.1021/acsnano.4c09295
Tommi Isoniemi, Paul Bouteyre, Xuerong Hu, Fedor Benimetskiy, Yue Wang, Maurice S Skolnick, Dmitry N Krizhanovskii, Alexander I Tartakovskii
{"title":"Realization of Z<sub>2</sub> Topological Photonic Insulators Made from Multilayer Transition Metal Dichalcogenides.","authors":"Tommi Isoniemi, Paul Bouteyre, Xuerong Hu, Fedor Benimetskiy, Yue Wang, Maurice S Skolnick, Dmitry N Krizhanovskii, Alexander I Tartakovskii","doi":"10.1021/acsnano.4c09295","DOIUrl":null,"url":null,"abstract":"<p><p>Monolayers of semiconducting transition metal dichalcogenides (TMDs) have long attracted interest for their intriguing optical and electronic properties. Recently, TMDs in their quasi-bulk form have started to show considerable promise for nanophotonics thanks to their high refractive indices, large optical anisotropy, wide transparency windows reaching to the visible, and robust room temperature excitons promising for nonlinear optics. Adherence of TMD layers to any substrate via van der Waals forces is a further key enabler for the nanofabrication of complex photonic structures requiring heterointegration. Here, we use the attractive properties of TMDs and realize topological spin-Hall photonic lattices made of arrays of triangular nanoholes in 50 to 100 nm thick WS<sub>2</sub> flakes exfoliated on SiO<sub>2</sub>/Si substrates. High-quality structures are achieved by taking advantage of anisotropic dry etching dictated by the crystal axes of WS<sub>2</sub>. Reflectance measurements at room temperature show a photonic gap opening in the near-infrared in trivial and topological phases. Unidirectional propagation along the domain interface is demonstrated in real space via circularly polarized laser excitation in samples with both zigzag and armchair domain boundaries. Finite-difference time-domain simulations are used to interpret optical spectroscopy results. Our work demonstrates the feasibility of more complex nanophotonic devices based on the layered (van der Waals) materials platform.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":"32547-32555"},"PeriodicalIF":15.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603781/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c09295","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Monolayers of semiconducting transition metal dichalcogenides (TMDs) have long attracted interest for their intriguing optical and electronic properties. Recently, TMDs in their quasi-bulk form have started to show considerable promise for nanophotonics thanks to their high refractive indices, large optical anisotropy, wide transparency windows reaching to the visible, and robust room temperature excitons promising for nonlinear optics. Adherence of TMD layers to any substrate via van der Waals forces is a further key enabler for the nanofabrication of complex photonic structures requiring heterointegration. Here, we use the attractive properties of TMDs and realize topological spin-Hall photonic lattices made of arrays of triangular nanoholes in 50 to 100 nm thick WS2 flakes exfoliated on SiO2/Si substrates. High-quality structures are achieved by taking advantage of anisotropic dry etching dictated by the crystal axes of WS2. Reflectance measurements at room temperature show a photonic gap opening in the near-infrared in trivial and topological phases. Unidirectional propagation along the domain interface is demonstrated in real space via circularly polarized laser excitation in samples with both zigzag and armchair domain boundaries. Finite-difference time-domain simulations are used to interpret optical spectroscopy results. Our work demonstrates the feasibility of more complex nanophotonic devices based on the layered (van der Waals) materials platform.

Abstract Image

实现由多层过渡金属二卤化物制成的 Z2 拓扑光子绝缘体。
长期以来,半导体过渡金属二掺杂化合物(TMDs)单层因其引人入胜的光学和电子特性而备受关注。最近,准块状 TMD 因其高折射率、大光学各向异性、可达可见光的宽透明度窗口以及有望用于非线性光学的强大室温激子,开始在纳米光子学领域大显身手。TMD 层通过范德华力附着在任何基底上,是纳米制造需要异质结合的复杂光子结构的另一个关键因素。在这里,我们利用 TMD 的诱人特性,在二氧化硅/硅衬底上剥离出的 50 至 100 纳米厚的 WS2 片中实现了由三角形纳米孔阵列组成的拓扑自旋-霍尔光子晶格。通过利用 WS2 晶体轴决定的各向异性干蚀刻,实现了高质量的结构。室温下的反射测量显示,三相和拓扑相的光子间隙在近红外区域打开。在具有人字形和扶手椅形畴边界的样品中,通过圆偏振激光激励,在实际空间中演示了沿畴界面的单向传播。有限差分时域模拟用于解释光学光谱结果。我们的工作证明了基于层状(范德华)材料平台的更复杂的纳米光子器件的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信