Jilan Jiang, Yimin Liu, Jun Meng, Guoxiong Wu, Bian He, Tingting Ma, Wen Bao, Jingfang Fan
{"title":"Dry soil moisture on the Tibetan plateau drives synchronous extreme heatwaves in Europe and East Asia","authors":"Jilan Jiang, Yimin Liu, Jun Meng, Guoxiong Wu, Bian He, Tingting Ma, Wen Bao, Jingfang Fan","doi":"10.1038/s41612-024-00831-x","DOIUrl":null,"url":null,"abstract":"Recently, extreme heatwaves have frequently concurrently swept across Europe and East Asia, causing severe cascading socioeconomic consequences. However, the nonlinear synchronization relationship between these heatwaves and their underlying physical mechanisms remains poorly understood. Utilizing the event synchronization climate network method, atmospheric dynamic diagnostics, and numerical experiments, we revealed robust synchronization between heatwaves over Europe and East Asia, strongly associated with dry soil moisture conditions over the Tibetan Plateau from the preceding winter to summer. Dry soil moisture triggers an equivalent barotropic anticyclone north of the Tibetan Plateau, coinciding with the subtropical westerly jet waveguide and initiating circumglobal atmospheric Rossby waves propagating westward and eastward. Consequently, an equivalent barotropic anticyclone develops over Europe. These anticyclones induce simultaneous heatwaves across Europe and East Asia by increasing downward solar radiation and adiabatic sinking, amplified by positive land-atmosphere feedback. Our findings significantly enhance the understanding and predictive capabilities of these synchronous heatwaves across Eurasia.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-10"},"PeriodicalIF":8.5000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00831-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00831-x","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, extreme heatwaves have frequently concurrently swept across Europe and East Asia, causing severe cascading socioeconomic consequences. However, the nonlinear synchronization relationship between these heatwaves and their underlying physical mechanisms remains poorly understood. Utilizing the event synchronization climate network method, atmospheric dynamic diagnostics, and numerical experiments, we revealed robust synchronization between heatwaves over Europe and East Asia, strongly associated with dry soil moisture conditions over the Tibetan Plateau from the preceding winter to summer. Dry soil moisture triggers an equivalent barotropic anticyclone north of the Tibetan Plateau, coinciding with the subtropical westerly jet waveguide and initiating circumglobal atmospheric Rossby waves propagating westward and eastward. Consequently, an equivalent barotropic anticyclone develops over Europe. These anticyclones induce simultaneous heatwaves across Europe and East Asia by increasing downward solar radiation and adiabatic sinking, amplified by positive land-atmosphere feedback. Our findings significantly enhance the understanding and predictive capabilities of these synchronous heatwaves across Eurasia.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.