Chongyang Zhang, Jiankai Zhang, Amanda C. Maycock, Wenshou Tian
{"title":"Distinct tropospheric anomalies during sudden stratospheric warming events accompanied by strong and weak Ural Ridge","authors":"Chongyang Zhang, Jiankai Zhang, Amanda C. Maycock, Wenshou Tian","doi":"10.1038/s41612-024-00826-8","DOIUrl":null,"url":null,"abstract":"Different tropospheric precursor anomalies leading to sudden stratospheric warmings (SSWs) may result in different circulation evolution. This study finds that there are distinct differences in tropospheric circulation evolutions during SSWs following anomalously strong- (SUR-SSWs) and weak- (WUR-SSWs) Ural ridge. SUR-SSWs exhibit enhanced East Asian trough in the following week, while enhanced Greenland ridge and negative tropospheric annular mode anomalies can persist for 1 month. In contrast, WUR-SSWs exhibit surface cooling over northern Eurasia without notable tropospheric annular mode anomalies. During SUR-SSWs, waves induced by the enhanced Ural wave source tend to propagate below the tropopause, amplifying the East Asian trough. Additionally, due to decreased wave phase speed, the preexisting Ural ridge anomalies migrate westward and amplify the Greenland ridge. Before WUR-SSWs, preexisting cooling over Northeast Asia migrates westward and amplifies northern Eurasia cooling. Thus, the Ural ridge anomalies prior to SSWs significantly influence post-SSW tropospheric circulation.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-14"},"PeriodicalIF":8.5000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00826-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00826-8","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Different tropospheric precursor anomalies leading to sudden stratospheric warmings (SSWs) may result in different circulation evolution. This study finds that there are distinct differences in tropospheric circulation evolutions during SSWs following anomalously strong- (SUR-SSWs) and weak- (WUR-SSWs) Ural ridge. SUR-SSWs exhibit enhanced East Asian trough in the following week, while enhanced Greenland ridge and negative tropospheric annular mode anomalies can persist for 1 month. In contrast, WUR-SSWs exhibit surface cooling over northern Eurasia without notable tropospheric annular mode anomalies. During SUR-SSWs, waves induced by the enhanced Ural wave source tend to propagate below the tropopause, amplifying the East Asian trough. Additionally, due to decreased wave phase speed, the preexisting Ural ridge anomalies migrate westward and amplify the Greenland ridge. Before WUR-SSWs, preexisting cooling over Northeast Asia migrates westward and amplifies northern Eurasia cooling. Thus, the Ural ridge anomalies prior to SSWs significantly influence post-SSW tropospheric circulation.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.