Yang Wu, Tianyu Sun, Mingrui Shao, Chang Ji, Chonghui Li, Chao Zhang, Zhen Li
{"title":"Pyroelectrically Driven Charge Transfer and its Advantages on SERS and Self-Cleaning Property","authors":"Yang Wu, Tianyu Sun, Mingrui Shao, Chang Ji, Chonghui Li, Chao Zhang, Zhen Li","doi":"10.1002/lpor.202401152","DOIUrl":null,"url":null,"abstract":"The fabrication of reusable SERS substrates with sensitivity at the single-molecule level remains challenging but promising. Herein, a composite surface-enhanced Raman scattering (SERS) substrate is proposed that includes Ag nanoparticle (Ag NPs) /Graphene/BaTiO<sub>3</sub> (Ag/G/BTO) from a chemical enhancement perspective. The pyroelectric field generated by BaTiO<sub>3</sub> drives the charge transfer between the SERS substrate and molecules, achieving a significant improvement in the SERS performance and self-cleaning properties. The SERS signals of rhodamine 6G (R6G) molecules are further amplified up to 70-fold. Thus, the detection limit is reduced by three orders of magnitude in this study, reaching 10<sup>−14</sup> <span>m</span> after applying a pyroelectric field. In addition, the substrate exhibits a higher degradation efficiency than previous self-cleaning SERS substrates because of the outstanding catalytic properties of BaTiO<sub>3</sub>. Target molecules are degraded effectively after several temperature cycles. A detailed mechanism analysis of pyroelectric SERS is conducted based on theoretical simulations and experimental results. This study is considered to deepen the understanding of SERS mechanisms and boost the application of SERS technology.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"7 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202401152","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The fabrication of reusable SERS substrates with sensitivity at the single-molecule level remains challenging but promising. Herein, a composite surface-enhanced Raman scattering (SERS) substrate is proposed that includes Ag nanoparticle (Ag NPs) /Graphene/BaTiO3 (Ag/G/BTO) from a chemical enhancement perspective. The pyroelectric field generated by BaTiO3 drives the charge transfer between the SERS substrate and molecules, achieving a significant improvement in the SERS performance and self-cleaning properties. The SERS signals of rhodamine 6G (R6G) molecules are further amplified up to 70-fold. Thus, the detection limit is reduced by three orders of magnitude in this study, reaching 10−14m after applying a pyroelectric field. In addition, the substrate exhibits a higher degradation efficiency than previous self-cleaning SERS substrates because of the outstanding catalytic properties of BaTiO3. Target molecules are degraded effectively after several temperature cycles. A detailed mechanism analysis of pyroelectric SERS is conducted based on theoretical simulations and experimental results. This study is considered to deepen the understanding of SERS mechanisms and boost the application of SERS technology.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.