A Polarization-Insensitive and Adaptively-Blazed Meta-Grating Based on Dispersive Metasurfaces

IF 9.8 1区 物理与天体物理 Q1 OPTICS
Guanxing Zang, Zhijun Liu, Shilun Feng, Weiming Zhu
{"title":"A Polarization-Insensitive and Adaptively-Blazed Meta-Grating Based on Dispersive Metasurfaces","authors":"Guanxing Zang, Zhijun Liu, Shilun Feng, Weiming Zhu","doi":"10.1002/lpor.202401031","DOIUrl":null,"url":null,"abstract":"The diffraction efficiency of blaze gratings is optimized only at a specific frequency due to a fixed blaze angle, resulting in reduced and variable diffraction efficiencies over the working frequency band. Additionally, blazed gratings demonstrate polarization dependence due to their groove structures and the interaction of light with their surfaces. Consequently, designing gratings with constant diffraction efficiencies across a wide frequency bandwidth while maintaining polarization independence remains a challenge. Here, a design paradigm of dispersion engineerable meta-grating inspired by orthogonal harmonic oscillations (OHO) is presented. Utilizing the OHO model, the phase dispersion of a metasurface can be precisely controlled, which applies to any unit cell featuring two orthogonal electromagnetic resonances. As a proof of concept, a polarization-insensitive meta-grating is showcased, where the blazed angle adapts with the incident frequency, ensuring broadband performance. In the experiment, the adaptively-blazed grating measured an optimized and constant diffraction efficiency of ≈80% over the working wavelength range, i.e., 8.7–12.2 µm. The difference in diffraction efficiency between the two perpendicular linear polarization states remains within 4.6%. The proposed paradigm paves the way for meta-device design based on precise dispersion engineering, which has potential applications in spectrometers, broadband beam forming and steering, hyperspectral imaging, etc.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"34 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202401031","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The diffraction efficiency of blaze gratings is optimized only at a specific frequency due to a fixed blaze angle, resulting in reduced and variable diffraction efficiencies over the working frequency band. Additionally, blazed gratings demonstrate polarization dependence due to their groove structures and the interaction of light with their surfaces. Consequently, designing gratings with constant diffraction efficiencies across a wide frequency bandwidth while maintaining polarization independence remains a challenge. Here, a design paradigm of dispersion engineerable meta-grating inspired by orthogonal harmonic oscillations (OHO) is presented. Utilizing the OHO model, the phase dispersion of a metasurface can be precisely controlled, which applies to any unit cell featuring two orthogonal electromagnetic resonances. As a proof of concept, a polarization-insensitive meta-grating is showcased, where the blazed angle adapts with the incident frequency, ensuring broadband performance. In the experiment, the adaptively-blazed grating measured an optimized and constant diffraction efficiency of ≈80% over the working wavelength range, i.e., 8.7–12.2 µm. The difference in diffraction efficiency between the two perpendicular linear polarization states remains within 4.6%. The proposed paradigm paves the way for meta-device design based on precise dispersion engineering, which has potential applications in spectrometers, broadband beam forming and steering, hyperspectral imaging, etc.

Abstract Image

基于色散元表面的偏振不敏感和自适应眩光元光栅
由于光斑角度固定,光斑光栅的衍射效率只有在特定频率下才能达到最佳状态,因此在整个工作频段内衍射效率都会降低且变化不定。此外,由于其沟槽结构和光与其表面的相互作用,炽热光栅显示出偏振依赖性。因此,在设计具有宽频带恒定衍射效率的光栅时,同时保持偏振无关性仍然是一项挑战。本文介绍了一种受正交谐振(OHO)启发的可进行色散工程的元光栅设计范例。利用 OHO 模型,可以精确控制元表面的相位色散,这适用于具有两个正交电磁共振的任何单元格。作为概念验证,展示了对偏振不敏感的元光栅,其炽热角随入射频率而变化,确保了宽带性能。在实验中,自适应釉面光栅在工作波长范围(即 8.7-12.2 微米)内测得的优化恒定衍射效率≈80%。两种垂直线性偏振态之间的衍射效率差异保持在 4.6% 以内。所提出的范例为基于精确色散工程的元器件设计铺平了道路,有望应用于光谱仪、宽带波束形成和转向、高光谱成像等领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信