{"title":"Occurrence, migration, and assessment of human health and ecological risks of PFASs and EDCs in groundwater of Northeast China","authors":"Jiaxun Jiang, Dongmei Han, Yi Xiao, Xianfang Song","doi":"10.1016/j.watres.2024.122810","DOIUrl":null,"url":null,"abstract":"Northeast China as an important base of grain production in China, has been suffering from potential groundwater pollution due to the excessive and prolonged application of fertilizers and pesticides. However, exploration of emerging contaminants pollution in groundwater and assessment of human health and ecological risks caused by large-scale agricultural activities have been relatively scarce. This study collected groundwater samples from typical agricultural areas in Northeast China to investigate the extent of contamination by nitrate, per- and polyfluoroalkyl substances (PFASs) and endocrine-disrupting compounds (EDCs), and then compared the levels of these pollutants with those in other regions of China. Groundwater nitrate pollution caused by strong agricultural activity is widespread in Northeast China, with nitrate-nitrogen (NO<sub>3</sub>-N) concentrations exceeding 10 mg/L in as many as 40.3% of 429 samples. 8 types of PFASs (3.7-7.1 ng/L) and 11 types of EDCs (18114.0-62029.8 ng/L) were detected in the collected groundwater samples. Using the Risk Quotient (RQ) method, this study assessed ecological risk and found that the risk level of perfluorooctane sulfonate (PFOS) was higher than that of other PFASs. The groundwater EDCs risks in Northeast China was higher compared to other regions in China, with dibutyl phthalate (DBP), Di-(2-ethylhexyl) phthalate (DEHP), Bisphenol A (BPA) having high ecological risk levels. Nitrate, PFASs and EDCs have been detected in deep groundwater (70-100 m depth), indicating that the deeper aquifers could be significantly threatened by pollutants due to human activities. Fertilizers, pesticides, domestic wastewater, and industrial discharges are major sources of groundwater pollutants in the agricultural regions. Industrial-sourced EDCs were widely detected in groundwater of agricultural area, suggesting that the transport of these pollutants is very active in groundwater system. Groundwater monitoring and pollution prevention are extremely urgent, especially for emerging contaminants. This study can provide important warnings and water resource management references for other agricultural areas affected by intensively agricultural activities in the world.","PeriodicalId":443,"journal":{"name":"Water Research","volume":null,"pages":null},"PeriodicalIF":11.4000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2024.122810","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Northeast China as an important base of grain production in China, has been suffering from potential groundwater pollution due to the excessive and prolonged application of fertilizers and pesticides. However, exploration of emerging contaminants pollution in groundwater and assessment of human health and ecological risks caused by large-scale agricultural activities have been relatively scarce. This study collected groundwater samples from typical agricultural areas in Northeast China to investigate the extent of contamination by nitrate, per- and polyfluoroalkyl substances (PFASs) and endocrine-disrupting compounds (EDCs), and then compared the levels of these pollutants with those in other regions of China. Groundwater nitrate pollution caused by strong agricultural activity is widespread in Northeast China, with nitrate-nitrogen (NO3-N) concentrations exceeding 10 mg/L in as many as 40.3% of 429 samples. 8 types of PFASs (3.7-7.1 ng/L) and 11 types of EDCs (18114.0-62029.8 ng/L) were detected in the collected groundwater samples. Using the Risk Quotient (RQ) method, this study assessed ecological risk and found that the risk level of perfluorooctane sulfonate (PFOS) was higher than that of other PFASs. The groundwater EDCs risks in Northeast China was higher compared to other regions in China, with dibutyl phthalate (DBP), Di-(2-ethylhexyl) phthalate (DEHP), Bisphenol A (BPA) having high ecological risk levels. Nitrate, PFASs and EDCs have been detected in deep groundwater (70-100 m depth), indicating that the deeper aquifers could be significantly threatened by pollutants due to human activities. Fertilizers, pesticides, domestic wastewater, and industrial discharges are major sources of groundwater pollutants in the agricultural regions. Industrial-sourced EDCs were widely detected in groundwater of agricultural area, suggesting that the transport of these pollutants is very active in groundwater system. Groundwater monitoring and pollution prevention are extremely urgent, especially for emerging contaminants. This study can provide important warnings and water resource management references for other agricultural areas affected by intensively agricultural activities in the world.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.