Experimental studies on fluctuation properties of dust, turbulence and electric field during floating dust weather in Lanzhou

IF 2.4 3区 工程技术
Tian-sheng Liu, Tian-Li Bo
{"title":"Experimental studies on fluctuation properties of dust, turbulence and electric field during floating dust weather in Lanzhou","authors":"Tian-sheng Liu,&nbsp;Tian-Li Bo","doi":"10.1007/s10035-024-01481-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, real-time measurements of three-dimensional wind speed, electric field and dust concentration during the floating-dust event were carried out in Lanzhou. The scaling relationship of different physical quantities in spectral space and the effect of turbulent events on dust and heat transport are studied by spectral method and octant analysis method. Our results show that the logarithmic value of power spectrum of dust concentration, relative humidity (<i>RH</i>), streamwise and vertical wind speed (<i>u</i> and <i>w</i>) between 0.06 Hz and 0.435 Hz meets the linear relationship with the logarithmic value of frequency (<i>f</i>), and decreases with the logarithmic value of <i>f</i>. For different stages, in the frequency range from 0.06 Hz to 0.218 Hz, the slope of the <i>u</i> first increases and then decreases. The slope of dust concentration and <i>RH</i> did not change significantly in the development stage, but decreased in the decay stage. The slope of the temperature (<i>T</i>) first decreases and then increases. In the frequency range from 0.218 Hz to 0.435 Hz, the slope of <i>u</i> and <i>RH</i> first increase and then decrease. The slope of the dust concentration does not change significantly during the development stage and decreases in the decay stage. The slope of <i>w</i> first increases and then decreases. In the second stage, the contribution of ejection and sweep events to the turbulent motion increases. For dust and heat transport, the O<sub>5</sub> and O<sub>8</sub> have a larger number contribution. Although the number and intensity contribution ratio of all octants increased or decreased in the second and third stages, in terms of the intensity of a single event, the contribution of all octants to the dust and heat transport increased.</p></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"27 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-024-01481-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, real-time measurements of three-dimensional wind speed, electric field and dust concentration during the floating-dust event were carried out in Lanzhou. The scaling relationship of different physical quantities in spectral space and the effect of turbulent events on dust and heat transport are studied by spectral method and octant analysis method. Our results show that the logarithmic value of power spectrum of dust concentration, relative humidity (RH), streamwise and vertical wind speed (u and w) between 0.06 Hz and 0.435 Hz meets the linear relationship with the logarithmic value of frequency (f), and decreases with the logarithmic value of f. For different stages, in the frequency range from 0.06 Hz to 0.218 Hz, the slope of the u first increases and then decreases. The slope of dust concentration and RH did not change significantly in the development stage, but decreased in the decay stage. The slope of the temperature (T) first decreases and then increases. In the frequency range from 0.218 Hz to 0.435 Hz, the slope of u and RH first increase and then decrease. The slope of the dust concentration does not change significantly during the development stage and decreases in the decay stage. The slope of w first increases and then decreases. In the second stage, the contribution of ejection and sweep events to the turbulent motion increases. For dust and heat transport, the O5 and O8 have a larger number contribution. Although the number and intensity contribution ratio of all octants increased or decreased in the second and third stages, in terms of the intensity of a single event, the contribution of all octants to the dust and heat transport increased.

Abstract Image

兰州浮尘天气中尘埃、湍流和电场波动特性的试验研究
本文对兰州浮尘事件期间的三维风速、电场和尘浓度进行了实时测量。采用频谱法和八分分析法研究了不同物理量在频谱空间的比例关系以及湍流事件对尘埃和热传输的影响。结果表明,在 0.06 Hz 至 0.435 Hz 之间,尘浓度、相对湿度、流向风速和垂直风速(u 和 w)的功率谱对数值与频率(f)的对数值呈线性关系,并随 f 的对数值增大而减小。灰尘浓度和相对湿度的斜率在发展阶段变化不大,但在衰减阶段有所下降。温度(T)的斜率先减小后增大。在 0.218 Hz 至 0.435 Hz 的频率范围内,u 和 RH 的斜率先增大后减小。灰尘浓度的斜率在发展阶段变化不大,在衰减阶段有所减小。w 的斜率先增大后减小。在第二阶段,抛射和扫掠事件对湍流运动的贡献增加。对于尘埃和热传输,O5 和 O8 的数量贡献较大。虽然在第二和第三阶段,所有八度体的数量和强度贡献比都有所增减,但就单个事件的强度而言,所有八度体对尘埃和热传输的贡献都有所增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Granular Matter
Granular Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-MECHANICS
CiteScore
4.30
自引率
8.30%
发文量
95
期刊介绍: Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science. These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations. >> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa. The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信