Unravelling the Holomorphic Twist: Central Charges

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Pieter Bomans, Jingxiang Wu
{"title":"Unravelling the Holomorphic Twist: Central Charges","authors":"Pieter Bomans,&nbsp;Jingxiang Wu","doi":"10.1007/s00220-024-05167-4","DOIUrl":null,"url":null,"abstract":"<div><p>The holomorphic twist provides a powerful framework to study minimally protected sectors in supersymmetric quantum field theories. We investigate the algebraic structure underlying the holomorphic twist of <span>\\(\\mathcal {N}=1\\)</span> superconformal field theories in four dimensions. In particular, in holomorphically twisted theories the flavour and conformal symmetry algebras are enhanced to infinite-dimensional higher Kac Moody and higher Virasoro symmetry algebras respectively. We explicitly compute the binary and ternary <span>\\(\\lambda \\)</span>-brackets and clarify their relation with the underlying infinite-dimensional symmetry algebra. Doing so we show that the central extensions of said symmetry algebras precisely encode the conformal anomalies <i>a</i> and <i>c</i> as well as the flavour central charges of the physical four-dimensional theory. This parallels the familiar story in two dimensions where the conformal anomaly <i>c</i> is encoded in the central extension of the Virasoro algebra.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"405 12","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-024-05167-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05167-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The holomorphic twist provides a powerful framework to study minimally protected sectors in supersymmetric quantum field theories. We investigate the algebraic structure underlying the holomorphic twist of \(\mathcal {N}=1\) superconformal field theories in four dimensions. In particular, in holomorphically twisted theories the flavour and conformal symmetry algebras are enhanced to infinite-dimensional higher Kac Moody and higher Virasoro symmetry algebras respectively. We explicitly compute the binary and ternary \(\lambda \)-brackets and clarify their relation with the underlying infinite-dimensional symmetry algebra. Doing so we show that the central extensions of said symmetry algebras precisely encode the conformal anomalies a and c as well as the flavour central charges of the physical four-dimensional theory. This parallels the familiar story in two dimensions where the conformal anomaly c is encoded in the central extension of the Virasoro algebra.

解读全形扭曲:中心电荷
全形扭转为研究超对称量子场论中的最小保护扇区提供了一个强有力的框架。我们研究了四维超共形场论全形扭转的代数结构。特别是,在全形扭转理论中,味道和共形对称性布拉分别增强为无限维的高Kac Moody和高Virasoro对称性布拉。我们明确地计算了二元和三元 \(\lambda \)-brackets,并阐明了它们与底层无限维对称代数的关系。这样,我们就证明了上述对称代数的中心扩展精确地编码了共形反常a和c以及物理四维理论的味道中心电荷。这与我们熟悉的二维故事相似,在二维故事中,共形反常c被编码在维拉索罗代数的中心扩展中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信