Classification of Discrete Weak KAM Solutions on Linearly Repetitive Quasi-Periodic Sets

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Eduardo Garibaldi, Samuel Petite, Philippe Thieullen
{"title":"Classification of Discrete Weak KAM Solutions on Linearly Repetitive Quasi-Periodic Sets","authors":"Eduardo Garibaldi,&nbsp;Samuel Petite,&nbsp;Philippe Thieullen","doi":"10.1007/s00220-024-05161-w","DOIUrl":null,"url":null,"abstract":"<div><p>A discrete weak KAM solution is a potential function that highlights the ground state configurations at zero temperature of an infinite chain of atoms interacting with a periodic or quasi-periodic substrate. It is well known that weak KAM solutions exist for periodic substrates as in the Frenkel–Kontorova model. Weak solutions may not exist in the almost periodic setting as in the theory of stationary ergodic Hamilton–Jacobi equations (where they are called correctors). For linearly repetitive quasi-periodic substrates, we show that equivariant interactions that fulfill a twist condition and a non-degenerate property always admit sublinear weak KAM solutions. We moreover classify all possible types of weak KAM solutions and calibrated configurations according to an intrinsic prefered order. The notion of prefered order is new even in the classical periodic case.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"405 12","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05161-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A discrete weak KAM solution is a potential function that highlights the ground state configurations at zero temperature of an infinite chain of atoms interacting with a periodic or quasi-periodic substrate. It is well known that weak KAM solutions exist for periodic substrates as in the Frenkel–Kontorova model. Weak solutions may not exist in the almost periodic setting as in the theory of stationary ergodic Hamilton–Jacobi equations (where they are called correctors). For linearly repetitive quasi-periodic substrates, we show that equivariant interactions that fulfill a twist condition and a non-degenerate property always admit sublinear weak KAM solutions. We moreover classify all possible types of weak KAM solutions and calibrated configurations according to an intrinsic prefered order. The notion of prefered order is new even in the classical periodic case.

线性重复准周期集上离散弱 KAM 解的分类
离散弱 KAM 解是一个势函数,它突出了与周期性或准周期性基底相互作用的无限原子链在零温时的基态构型。众所周知,周期性基底存在弱 KAM 解,如 Frenkel-Kontorova 模型。在几乎周期的情况下,弱解可能不存在,如在静态遍历汉密尔顿-雅各比方程理论中(它们被称为校正器)。对于线性重复的准周期基底,我们证明,满足扭转条件和非退化特性的等变相互作用总是承认亚线性弱 KAM 解。此外,我们还根据内在优选阶数对所有可能的弱 KAM 解类型和校准配置进行了分类。即使在经典周期情况下,优选阶的概念也是全新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信