Syeda Wageeha Shakir, Muhammad Usman, Usman Habib, Shazma Ali, Jamshad Bashir, Zoya Noor
{"title":"221 nm far ultraviolet-C AlGaN laser diode with optimized p-AlN electron blocking epilayers","authors":"Syeda Wageeha Shakir, Muhammad Usman, Usman Habib, Shazma Ali, Jamshad Bashir, Zoya Noor","doi":"10.1007/s11082-024-07788-4","DOIUrl":null,"url":null,"abstract":"<div><p>The optical characteristics of far ultraviolet-C (FUV) laser diode (LD), with optimized position of AlN electron blocking layer (EBL), is shown to enhance carrier injection into the multiquantum well region. The carrier behavior mechanism of FUV LDs is illustrated through the simulation results. The optimization of AlN EBL position, in the p-region of the FUV LD, is studied in this work. FUV LD with p-AlN EBL, between last quantum barrier and p-waveguide, show an improved gain profile and stimulated emission. The optical power of this FUV LD has been found to have increased markedly. All our FUV LDs are emitting far ultraviolet-C emission i.e., 221 nm. To the best of our knowledge, 221 nm AlGaN LDs are hardly reported in the literature. Therefore, we believe our work on 221 nm AlGaN far ultraviolet-C laser diode will open new avenues for the research community.</p></div>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"56 12","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11082-024-07788-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The optical characteristics of far ultraviolet-C (FUV) laser diode (LD), with optimized position of AlN electron blocking layer (EBL), is shown to enhance carrier injection into the multiquantum well region. The carrier behavior mechanism of FUV LDs is illustrated through the simulation results. The optimization of AlN EBL position, in the p-region of the FUV LD, is studied in this work. FUV LD with p-AlN EBL, between last quantum barrier and p-waveguide, show an improved gain profile and stimulated emission. The optical power of this FUV LD has been found to have increased markedly. All our FUV LDs are emitting far ultraviolet-C emission i.e., 221 nm. To the best of our knowledge, 221 nm AlGaN LDs are hardly reported in the literature. Therefore, we believe our work on 221 nm AlGaN far ultraviolet-C laser diode will open new avenues for the research community.
期刊介绍:
Optical and Quantum Electronics provides an international forum for the publication of original research papers, tutorial reviews and letters in such fields as optical physics, optical engineering and optoelectronics. Special issues are published on topics of current interest.
Optical and Quantum Electronics is published monthly. It is concerned with the technology and physics of optical systems, components and devices, i.e., with topics such as: optical fibres; semiconductor lasers and LEDs; light detection and imaging devices; nanophotonics; photonic integration and optoelectronic integrated circuits; silicon photonics; displays; optical communications from devices to systems; materials for photonics (e.g. semiconductors, glasses, graphene); the physics and simulation of optical devices and systems; nanotechnologies in photonics (including engineered nano-structures such as photonic crystals, sub-wavelength photonic structures, metamaterials, and plasmonics); advanced quantum and optoelectronic applications (e.g. quantum computing, memory and communications, quantum sensing and quantum dots); photonic sensors and bio-sensors; Terahertz phenomena; non-linear optics and ultrafast phenomena; green photonics.