Hu Li, Xiaoqing Wang, Zhen Guo, Zhenfeng Li, Wenmin Wang, Peng Fu, Xiucheng Fu
{"title":"Application of bio-based vegetable oils as processing aids in industrial natural rubber composites","authors":"Hu Li, Xiaoqing Wang, Zhen Guo, Zhenfeng Li, Wenmin Wang, Peng Fu, Xiucheng Fu","doi":"10.1007/s42464-024-00282-2","DOIUrl":null,"url":null,"abstract":"<div><p>Rubber composites based on vegetable oils are being increasingly developed as these materials significantly reduce the use of petroleum-based carcinogenic oils as plasticisers in rubber products. Apart from renewability, vegetable oils have some functional groups such as polar group, double bond and long alkyl chain, which could make rubber performance more comprehensive, making processing oil from petroleum-based “one agent for one function” to bio-based “one agent for multiple functions”. In this work, we selected one bio-based vegetable oil (FN-B17) as green processing aid for nature rubber (NR) composites and petroleum-based oils (PB-1,2,3,4,5) were also chosen to be investigated for comparison. The plasticisation effects of FN-B17 and other plasticisers on composites were systematically studied. In specific, Mooney viscosity, processing properties and cross-linking characteristics of composites with various kinds of oils were characterised while the mechanical properties and RPA dynamic behaviors were also evaluated. The results indicated that the performance of bio-based oil on processing and mechanical properties of NR composites are similar or even better than that of petroleum-based oils, whereas bio-based oil is renewable with lower cost, which would be cost-effective green processing oil that could replace petroleum-based oil for NR composites. Soon, the trend of utilising bio-based oil may bring considerable advancements in the performance of filled rubber composites in an environmentally acceptable and sustainable manner.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":662,"journal":{"name":"Journal of Rubber Research","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rubber Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s42464-024-00282-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Rubber composites based on vegetable oils are being increasingly developed as these materials significantly reduce the use of petroleum-based carcinogenic oils as plasticisers in rubber products. Apart from renewability, vegetable oils have some functional groups such as polar group, double bond and long alkyl chain, which could make rubber performance more comprehensive, making processing oil from petroleum-based “one agent for one function” to bio-based “one agent for multiple functions”. In this work, we selected one bio-based vegetable oil (FN-B17) as green processing aid for nature rubber (NR) composites and petroleum-based oils (PB-1,2,3,4,5) were also chosen to be investigated for comparison. The plasticisation effects of FN-B17 and other plasticisers on composites were systematically studied. In specific, Mooney viscosity, processing properties and cross-linking characteristics of composites with various kinds of oils were characterised while the mechanical properties and RPA dynamic behaviors were also evaluated. The results indicated that the performance of bio-based oil on processing and mechanical properties of NR composites are similar or even better than that of petroleum-based oils, whereas bio-based oil is renewable with lower cost, which would be cost-effective green processing oil that could replace petroleum-based oil for NR composites. Soon, the trend of utilising bio-based oil may bring considerable advancements in the performance of filled rubber composites in an environmentally acceptable and sustainable manner.
期刊介绍:
The Journal of Rubber Research is devoted to both natural and synthetic rubbers, as well as to related disciplines. The scope of the journal encompasses all aspects of rubber from the core disciplines of biology, physics and chemistry, as well as economics. As a specialised field, rubber science includes within its niche a vast potential of innovative and value-added research areas yet to be explored. This peer reviewed publication focuses on the results of active experimental research and authoritative reviews on all aspects of rubber science.
The Journal of Rubber Research welcomes research on:
the upstream, including crop management, crop improvement and protection, and biotechnology;
the midstream, including processing and effluent management;
the downstream, including rubber engineering and product design, advanced rubber technology, latex science and technology, and chemistry and materials exploratory;
economics, including the economics of rubber production, consumption, and market analysis.
The Journal of Rubber Research serves to build a collective knowledge base while communicating information and validating the quality of research within the discipline, and bringing together work from experts in rubber science and related disciplines.
Scientists in both academia and industry involved in researching and working with all aspects of rubber will find this journal to be both source of information and a gateway for their own publications.