{"title":"An empirical formula for the proton radioactivity","authors":"Jie-Dong Jiang, Xiao Liu, Yang-yang Xu, Biao He, Xi-Jun wu, Xiao-Hua Li","doi":"10.1140/epja/s10050-024-01443-y","DOIUrl":null,"url":null,"abstract":"<div><p>Proton radioactivity is an exotic decay mode of proton-rich nuclei far from the <span>\\(\\beta \\)</span>-stability line and shares the similar decay mechanism theory of barrier penetration as <span>\\(\\alpha \\)</span> decay. In present work, we extend the Hatsukawa formula (Hatsukawa et al. in Phys Rev C 42:674, 1990) for <span>\\(\\alpha \\)</span> decay to proton radioactivity and propose an empirical formula for evaluating the proton radioactivity half-lives of proton nuclei with Z > 68. Using this formula, we systematically calculate the proton radioactivity half-lives of 33 spherical proton emitters with the corresponding root-mean-square (rms) deviation being 0.391. It is found that the calculated half-lives can reproduce the experimental data well. Moreover, we extend this formula to predict the proton radioactivity half-lives of 18 spherical proton emitters, whose proton radioactivity is energetically allowed or observed but not yet quantified. For comparison, unified fission model (UFM), Coulomb potential and proximity potential model (CPPM), universal decay law for proton emission (UDLP) and new Geiger-Nuttall law (NG-N) are also used. All the predictions are basically consistent with each other.</p></div>","PeriodicalId":786,"journal":{"name":"The European Physical Journal A","volume":"60 11","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epja/s10050-024-01443-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Proton radioactivity is an exotic decay mode of proton-rich nuclei far from the \(\beta \)-stability line and shares the similar decay mechanism theory of barrier penetration as \(\alpha \) decay. In present work, we extend the Hatsukawa formula (Hatsukawa et al. in Phys Rev C 42:674, 1990) for \(\alpha \) decay to proton radioactivity and propose an empirical formula for evaluating the proton radioactivity half-lives of proton nuclei with Z > 68. Using this formula, we systematically calculate the proton radioactivity half-lives of 33 spherical proton emitters with the corresponding root-mean-square (rms) deviation being 0.391. It is found that the calculated half-lives can reproduce the experimental data well. Moreover, we extend this formula to predict the proton radioactivity half-lives of 18 spherical proton emitters, whose proton radioactivity is energetically allowed or observed but not yet quantified. For comparison, unified fission model (UFM), Coulomb potential and proximity potential model (CPPM), universal decay law for proton emission (UDLP) and new Geiger-Nuttall law (NG-N) are also used. All the predictions are basically consistent with each other.
期刊介绍:
Hadron Physics
Hadron Structure
Hadron Spectroscopy
Hadronic and Electroweak Interactions of Hadrons
Nonperturbative Approaches to QCD
Phenomenological Approaches to Hadron Physics
Nuclear and Quark Matter
Heavy-Ion Collisions
Phase Diagram of the Strong Interaction
Hard Probes
Quark-Gluon Plasma and Hadronic Matter
Relativistic Transport and Hydrodynamics
Compact Stars
Nuclear Physics
Nuclear Structure and Reactions
Few-Body Systems
Radioactive Beams
Electroweak Interactions
Nuclear Astrophysics
Article Categories
Letters (Open Access)
Regular Articles
New Tools and Techniques
Reviews.