Feasibility study on machine learning methods for prediction of process-related parameters during WAAM process using SS-316L filler material

IF 2.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Sharath P. Subadra, Eduard Mayer, Philipp Wachtel, Shahram Sheikhi
{"title":"Feasibility study on machine learning methods for prediction of process-related parameters during WAAM process using SS-316L filler material","authors":"Sharath P. Subadra,&nbsp;Eduard Mayer,&nbsp;Philipp Wachtel,&nbsp;Shahram Sheikhi","doi":"10.1007/s40194-024-01855-w","DOIUrl":null,"url":null,"abstract":"<div><p>The geometry of objects by means of wire arc additive manufacturing technology (WAAM) is a function of the quality of the deposited layers. The process parameters variation and heat flow affect the geometric precision of the parts, when compared to the actual dimensions. Therefore, in situ geometry monitoring which is integrated in such a way to enable a backward control model is essential in the WAAM process. In this article, an attempt is made to study the effect of four input variables, namely voltage (U), welding current (I), travel speed and wire feed rate on the output function in the form of two geometrical characteristics of a single weld bead. These output functions which are determinant of the weld quality are width of weld bead (BW) and height of weld bead (BH). A machine learning approach is utilised to predict the bead dimensions based on the input parameters and to predict the parameters by assigning suitable scores. For predicting the bead dimensions, two models, namely linear regression and random forest, shall be utilised, whereas for the purpose of classification based on weld parameters, k-nearest neighbours model shall be employed. Through this work, a wide dataset of parameters in the form of input variable and output in the form bead dimensions are generated for 316LSi filler material which shall be used as a training data for a machine learning algorithm. Subsequently, the predicted parameters shall be cross-checked with actual parameters.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"68 12","pages":"3205 - 3214"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40194-024-01855-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding in the World","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40194-024-01855-w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The geometry of objects by means of wire arc additive manufacturing technology (WAAM) is a function of the quality of the deposited layers. The process parameters variation and heat flow affect the geometric precision of the parts, when compared to the actual dimensions. Therefore, in situ geometry monitoring which is integrated in such a way to enable a backward control model is essential in the WAAM process. In this article, an attempt is made to study the effect of four input variables, namely voltage (U), welding current (I), travel speed and wire feed rate on the output function in the form of two geometrical characteristics of a single weld bead. These output functions which are determinant of the weld quality are width of weld bead (BW) and height of weld bead (BH). A machine learning approach is utilised to predict the bead dimensions based on the input parameters and to predict the parameters by assigning suitable scores. For predicting the bead dimensions, two models, namely linear regression and random forest, shall be utilised, whereas for the purpose of classification based on weld parameters, k-nearest neighbours model shall be employed. Through this work, a wide dataset of parameters in the form of input variable and output in the form bead dimensions are generated for 316LSi filler material which shall be used as a training data for a machine learning algorithm. Subsequently, the predicted parameters shall be cross-checked with actual parameters.

使用 SS-316L 填充材料在 WAAM 工艺中预测工艺相关参数的机器学习方法的可行性研究
利用线弧快速成型技术(WAAM)制造的物体的几何形状是沉积层质量的函数。与实际尺寸相比,工艺参数变化和热流会影响零件的几何精度。因此,在 WAAM 工艺中,必须对原位几何形状进行监控,并将其集成到后向控制模型中。本文尝试研究四个输入变量,即电压 (U)、焊接电流 (I)、移动速度和送丝速率对单个焊珠两个几何特征输出函数的影响。这些决定焊接质量的输出函数是焊缝宽度 (BW) 和焊缝高度 (BH)。利用机器学习方法可根据输入参数预测焊缝尺寸,并通过分配合适的分数来预测参数。在预测焊缝尺寸时,将使用线性回归和随机森林两种模型,而在根据焊接参数进行分类时,将使用 k 近邻模型。通过这项工作,为 316LSi 填充材料生成了一个输入变量形式的参数和输出形式的焊缝尺寸的广泛数据集,该数据集将用作机器学习算法的训练数据。随后,预测参数将与实际参数进行交叉检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Welding in the World
Welding in the World METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
4.20
自引率
14.30%
发文量
181
审稿时长
6-12 weeks
期刊介绍: The journal Welding in the World publishes authoritative papers on every aspect of materials joining, including welding, brazing, soldering, cutting, thermal spraying and allied joining and fabrication techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信