Studying the effect of untreated and treated rice straw on different properties of carbon black filled styrene-butadiene rubber composites

IF 1.2 4区 化学 Q4 POLYMER SCIENCE
Eyad Sayed Abdallah Khalaf
{"title":"Studying the effect of untreated and treated rice straw on different properties of carbon black filled styrene-butadiene rubber composites","authors":"Eyad Sayed Abdallah Khalaf","doi":"10.1007/s42464-024-00269-z","DOIUrl":null,"url":null,"abstract":"<div><p>Extensive investigations have been performed on Egyptian rice straw (RS) fibre residues to be employed as a supplementary reinforcement material in polymer composites. In this study, two identical groups based on carbon black (CB) filled styrene butadiene rubber (SBR) vulcanisates were prepared by incorporating different proportions (10–50 phr) of treated and untreated rice straw (TRS/ URS) in the SBR composites to examine their effects on some of the demanded properties in rubber applications. Maleic anhydride (MA), as a coupling agent, was added to improve the interfacial bonding between the hydrophilic RS natural fibre and the hydrophobic SBR matrix. The TRS and URS were selectively grinded through a grinding machine to obtain RS fine powder with a selective grain size distribution ranging from about 20–180 μm. Some important physico-mechanical properties of the rubber vulcanisates were studied. The prepared samples were analysed by using X- ray diffractometer (XRD) and scanning electron microscopy (SEM). The tensile strength (TS), modulus (M100) and hardness values of TRS filled composites were almost superior compared to the URS ones, and 20 phr of TRS was found to be the optimum filling in SBR vulcanisates and this was obviously revealed through all the mechanical properties results as well as in the percentage swelling findings. The SEM analysis indicates that the presence of MA increases the interfacial interaction between SBR, and the alkali treated rice straw fibres, as well it was found to be in complete agreement with the TS findings. The XRD analysis reveals that the alkaline pretreatment of RS fibres was found to yield a higher crystallinity index for the SBR vulcanisates. The results indicate the potential of using TRS as filler in the rubber industry for cost reduction and raising the environmental credentials of the product.</p></div>","PeriodicalId":662,"journal":{"name":"Journal of Rubber Research","volume":"27 4","pages":"639 - 652"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rubber Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s42464-024-00269-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Extensive investigations have been performed on Egyptian rice straw (RS) fibre residues to be employed as a supplementary reinforcement material in polymer composites. In this study, two identical groups based on carbon black (CB) filled styrene butadiene rubber (SBR) vulcanisates were prepared by incorporating different proportions (10–50 phr) of treated and untreated rice straw (TRS/ URS) in the SBR composites to examine their effects on some of the demanded properties in rubber applications. Maleic anhydride (MA), as a coupling agent, was added to improve the interfacial bonding between the hydrophilic RS natural fibre and the hydrophobic SBR matrix. The TRS and URS were selectively grinded through a grinding machine to obtain RS fine powder with a selective grain size distribution ranging from about 20–180 μm. Some important physico-mechanical properties of the rubber vulcanisates were studied. The prepared samples were analysed by using X- ray diffractometer (XRD) and scanning electron microscopy (SEM). The tensile strength (TS), modulus (M100) and hardness values of TRS filled composites were almost superior compared to the URS ones, and 20 phr of TRS was found to be the optimum filling in SBR vulcanisates and this was obviously revealed through all the mechanical properties results as well as in the percentage swelling findings. The SEM analysis indicates that the presence of MA increases the interfacial interaction between SBR, and the alkali treated rice straw fibres, as well it was found to be in complete agreement with the TS findings. The XRD analysis reveals that the alkaline pretreatment of RS fibres was found to yield a higher crystallinity index for the SBR vulcanisates. The results indicate the potential of using TRS as filler in the rubber industry for cost reduction and raising the environmental credentials of the product.

研究未处理和处理过的稻草对炭黑填充丁苯橡胶复合材料不同性能的影响
人们对埃及稻草(RS)纤维残渣在聚合物复合材料中用作辅助增强材料进行了广泛的研究。在这项研究中,通过在丁苯橡胶(SBR)复合材料中加入不同比例(10-50 phr)的处理过和未处理过的稻草(TRS/ URS),制备了两组基于炭黑(CB)填充的丁苯橡胶(SBR)硫化弹性体,以检验它们对橡胶应用中某些所需性能的影响。马来酸酐(MA)作为偶联剂被添加进来,以改善亲水性 RS 天然纤维与疏水性 SBR 基质之间的界面结合。通过研磨机对 TRS 和 URS 进行选择性研磨,得到粒度分布在 20-180 μm 之间的 RS 细粉。对橡胶硫化胶的一些重要物理机械性能进行了研究。使用 X 射线衍射仪(XRD)和扫描电子显微镜(SEM)对制备的样品进行了分析。与 URS 复合材料相比,TRS 填充复合材料的拉伸强度(TS)、模量(M100)和硬度值几乎都更高,20 phr 的 TRS 被认为是 SBR 硫化物中的最佳填充物,这一点在所有的机械性能结果和膨胀百分比结果中都有明显的体现。SEM 分析表明,MA 的存在增加了 SBR 与碱处理过的稻草纤维之间的界面相互作用,这与 TS 的研究结果完全一致。XRD 分析表明,对 RS 纤维进行碱性预处理后,SBR 硫化物的结晶度指数更高。这些结果表明,在橡胶工业中使用 TRS 作为填料具有降低成本和提高产品环保性的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Rubber Research
Journal of Rubber Research 化学-高分子科学
自引率
15.40%
发文量
46
审稿时长
3 months
期刊介绍: The Journal of Rubber Research is devoted to both natural and synthetic rubbers, as well as to related disciplines. The scope of the journal encompasses all aspects of rubber from the core disciplines of biology, physics and chemistry, as well as economics. As a specialised field, rubber science includes within its niche a vast potential of innovative and value-added research areas yet to be explored. This peer reviewed publication focuses on the results of active experimental research and authoritative reviews on all aspects of rubber science. The Journal of Rubber Research welcomes research on: the upstream, including crop management, crop improvement and protection, and biotechnology; the midstream, including processing and effluent management; the downstream, including rubber engineering and product design, advanced rubber technology, latex science and technology, and chemistry and materials exploratory; economics, including the economics of rubber production, consumption, and market analysis. The Journal of Rubber Research serves to build a collective knowledge base while communicating information and validating the quality of research within the discipline, and bringing together work from experts in rubber science and related disciplines. Scientists in both academia and industry involved in researching and working with all aspects of rubber will find this journal to be both source of information and a gateway for their own publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信