New luminescent Eu(III) and Er(III) Schiff base complexes: synthesis, characterization and luminescence properties

IF 2.2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Aziza Sarwar, Mustaffa Shamsuddin, Karimah Kassim, Ehsanullah Kakar, Hamid Ullah, Shazia Iqbal
{"title":"New luminescent Eu(III) and Er(III) Schiff base complexes: synthesis, characterization and luminescence properties","authors":"Aziza Sarwar,&nbsp;Mustaffa Shamsuddin,&nbsp;Karimah Kassim,&nbsp;Ehsanullah Kakar,&nbsp;Hamid Ullah,&nbsp;Shazia Iqbal","doi":"10.1007/s13738-024-03117-4","DOIUrl":null,"url":null,"abstract":"<div><p>Two new complexes of europium (III) and erbium (III) were synthesized from diaminodiphenylether bridged spacer in 1:1 molar ratio of ligand and metal salt, whereas the ligand was synthesized in 1:2 molar ratio of diaminodiphenylether and aldehyde. The synthesized complexes were structurally analyzed through nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), energy-dispersive X-ray diffraction (EDX), UV–visible and photoluminescence spectroscopy. In both synthesized complexes, the metals were found in coordination to nitrogen and oxygen atoms of the azomethine (HC = N) and hydroxyl (–OH) groups as evident by FTIR and NMR spectral results in both synthesized complexes. Molar conductivity data for Eu(III) and Er(III) observed in the range of 129–135.5 Ω<sup>−1</sup>cm<sup>2</sup> mol<sup>−1</sup> determined that both complexes were 1:2 electrolytes. The presence of characteristic peaks for Eu, C, O and N was clearly identified in energy-dispersive X-ray diffraction, which confirmed its successful synthesis. Furthermore, the luminescence behavior of the complexes was investigated in the solution state with dichloromethane (DCM). Upon excitation at 274 nm, both complexes exhibited two emission bands centered at 379 nm to 399 nm and 519 nm for Eu(III) and Er(III). Consequently, the good emission properties illustrated that the synthesized complexes featured their potential as promising cost-effective luminescent materials.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":676,"journal":{"name":"Journal of the Iranian Chemical Society","volume":"21 12","pages":"2933 - 2942"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Iranian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13738-024-03117-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Two new complexes of europium (III) and erbium (III) were synthesized from diaminodiphenylether bridged spacer in 1:1 molar ratio of ligand and metal salt, whereas the ligand was synthesized in 1:2 molar ratio of diaminodiphenylether and aldehyde. The synthesized complexes were structurally analyzed through nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), energy-dispersive X-ray diffraction (EDX), UV–visible and photoluminescence spectroscopy. In both synthesized complexes, the metals were found in coordination to nitrogen and oxygen atoms of the azomethine (HC = N) and hydroxyl (–OH) groups as evident by FTIR and NMR spectral results in both synthesized complexes. Molar conductivity data for Eu(III) and Er(III) observed in the range of 129–135.5 Ω−1cm2 mol−1 determined that both complexes were 1:2 electrolytes. The presence of characteristic peaks for Eu, C, O and N was clearly identified in energy-dispersive X-ray diffraction, which confirmed its successful synthesis. Furthermore, the luminescence behavior of the complexes was investigated in the solution state with dichloromethane (DCM). Upon excitation at 274 nm, both complexes exhibited two emission bands centered at 379 nm to 399 nm and 519 nm for Eu(III) and Er(III). Consequently, the good emission properties illustrated that the synthesized complexes featured their potential as promising cost-effective luminescent materials.

Graphical abstract

Abstract Image

新的发光 Eu(III) 和 Er(III) 席夫碱配合物:合成、表征和发光特性
配体和金属盐的摩尔比为 1:1,配体和二氨基二苯醚的摩尔比为 1:2。合成的配合物通过核磁共振(NMR)、傅立叶变换红外(FTIR)、能量色散 X 射线衍射(EDX)、紫外可见光和光致发光光谱进行了结构分析。傅立叶变换红外光谱和核磁共振光谱结果表明,在这两种合成的配合物中,金属都与偶氮甲基(HC = N)和羟基(-OH)的氮原子和氧原子配位。在 129-135.5 Ω-1cm2 mol-1 范围内观察到的 Eu(III) 和 Er(III) 摩尔电导率数据表明,这两种复合物都是 1:2 电解质。在能量色散 X 射线衍射中,清楚地发现了 Eu、C、O 和 N 的特征峰,这证实了它的成功合成。此外,还研究了这些复合物在二氯甲烷(DCM)溶液状态下的发光行为。在 274 纳米波长的激发下,Eu(III) 和 Er(III)的两个配合物均显示出以 379 纳米波长至 399 纳米波长和 519 纳米波长为中心的两条发射带。因此,良好的发射特性说明合成的配合物具有作为具有成本效益的发光材料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
230
审稿时长
5.6 months
期刊介绍: JICS is an international journal covering general fields of chemistry. JICS welcomes high quality original papers in English dealing with experimental, theoretical and applied research related to all branches of chemistry. These include the fields of analytical, inorganic, organic and physical chemistry as well as the chemical biology area. Review articles discussing specific areas of chemistry of current chemical or biological importance are also published. JICS ensures visibility of your research results to a worldwide audience in science. You are kindly invited to submit your manuscript to the Editor-in-Chief or Regional Editor. All contributions in the form of original papers or short communications will be peer reviewed and published free of charge after acceptance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信