Optical spectroscopy of Nd3+-doped cadmium-rich borate glasses for near-infrared laser applications

IF 2.8 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
W. Romero-Romo, O. Soriano-Romero, U. Caldiño, S. Carmona-Téllez, R. Lozada-Morales, Sergio A. Tomás, A. N. Meza-Rocha
{"title":"Optical spectroscopy of Nd3+-doped cadmium-rich borate glasses for near-infrared laser applications","authors":"W. Romero-Romo,&nbsp;O. Soriano-Romero,&nbsp;U. Caldiño,&nbsp;S. Carmona-Téllez,&nbsp;R. Lozada-Morales,&nbsp;Sergio A. Tomás,&nbsp;A. N. Meza-Rocha","doi":"10.1007/s10854-024-13792-x","DOIUrl":null,"url":null,"abstract":"<div><p>The structural and spectroscopic properties of Nd<sup>3+</sup>-activated cadmium-rich borate (inverted) glasses are analyzed for near-infrared laser applications. The evaluation of the optimal glass-emitting sample by the Judd–Ofelt (JO) theory revealed JO parameter values of 4.56 × 10<sup>–20</sup> cm<sup>2</sup> (Ω<sub>2</sub>), 2.56 × 10<sup>–20</sup> cm<sup>2</sup> (Ω<sub>4</sub>), and 3.84 × 10<sup>–20</sup> cm<sup>2</sup> (Ω<sub>6</sub>). The Ω<sub>2</sub> value, along with the experimental oscillator strength, suggested that the cadmium-rich borate glass could provide a more asymmetrical Nd<sup>3+</sup> environment than other borate glasses like lithium-strontium-zinc, sodium-calcium, and lithium-lead-aluminum. In addition, the quality spectroscopy factor (χ = Ω<sub>4</sub>/Ω<sub>6</sub>) of 0.67 suggested that the <sup>4</sup>F<sub>3/2</sub> → <sup>4</sup>I<sub>11/2</sub> emission could be more suitable for laser applications. The stimulated emission cross-section (<i>σ</i><sub>p</sub>), theoretical quantum yield (<i>η</i><sub>Q</sub>), gain bandwidth (<i>σ</i><sub>p</sub> × Δ<i>λ</i><sub>em</sub>), and optical gain (<i>σ</i><sub>p</sub> × <i>τ</i><sub>rad</sub>) laser parameters were close to those reported in sodium-calcium-borate, zinc-aluminum-barium-borate, and bismuth-borate glasses, while the non-radiative rate (<i>W</i><sub>NR</sub>) and emission intensity saturation (<i>I</i><sub>S</sub>) resulted to be lower. The emission spectra, under 808 nm laser excitation, displayed the featured neodymium <sup>4</sup>F<sub>3/2</sub> → <sup>4</sup>I<sub>9/2</sub>,<sub>11/2</sub>,<sub>13/2</sub> transitions, being the <sup>4</sup>F<sub>3/2</sub> → <sup>4</sup>I<sub>11/2</sub> (1058 nm) transition the more dominant one, in agreement with the χ parameter value. Nd<sup>3+</sup> contents higher than 1.4 mol% led to emission quenching due to the increment of the cross-relaxation and/or energy migration rate. Such processes, according to the Inokuti–Hirayama model, were mainly mediated by electric dipole–dipole interactions within Nd–Nd clusters.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"35 32","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10854-024-13792-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-024-13792-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The structural and spectroscopic properties of Nd3+-activated cadmium-rich borate (inverted) glasses are analyzed for near-infrared laser applications. The evaluation of the optimal glass-emitting sample by the Judd–Ofelt (JO) theory revealed JO parameter values of 4.56 × 10–20 cm22), 2.56 × 10–20 cm24), and 3.84 × 10–20 cm26). The Ω2 value, along with the experimental oscillator strength, suggested that the cadmium-rich borate glass could provide a more asymmetrical Nd3+ environment than other borate glasses like lithium-strontium-zinc, sodium-calcium, and lithium-lead-aluminum. In addition, the quality spectroscopy factor (χ = Ω46) of 0.67 suggested that the 4F3/2 → 4I11/2 emission could be more suitable for laser applications. The stimulated emission cross-section (σp), theoretical quantum yield (ηQ), gain bandwidth (σp × Δλem), and optical gain (σp × τrad) laser parameters were close to those reported in sodium-calcium-borate, zinc-aluminum-barium-borate, and bismuth-borate glasses, while the non-radiative rate (WNR) and emission intensity saturation (IS) resulted to be lower. The emission spectra, under 808 nm laser excitation, displayed the featured neodymium 4F3/2 → 4I9/2,11/2,13/2 transitions, being the 4F3/2 → 4I11/2 (1058 nm) transition the more dominant one, in agreement with the χ parameter value. Nd3+ contents higher than 1.4 mol% led to emission quenching due to the increment of the cross-relaxation and/or energy migration rate. Such processes, according to the Inokuti–Hirayama model, were mainly mediated by electric dipole–dipole interactions within Nd–Nd clusters.

用于近红外激光应用的掺杂 Nd3+ 的富镉硼酸盐玻璃的光学光谱分析
分析了 Nd3+ 激活的富镉硼酸盐(倒置)玻璃在近红外激光应用中的结构和光谱特性。通过 Judd-Ofelt (JO) 理论对最佳玻璃发射样品进行评估,发现 JO 参数值分别为 4.56 × 10-20 cm2 (Ω2)、2.56 × 10-20 cm2 (Ω4) 和 3.84 × 10-20 cm2 (Ω6)。Ω2值和实验振荡器强度表明,与锂-锶-锌、钠-钙和锂-铅-铝等其他硼酸盐玻璃相比,富镉硼酸盐玻璃能提供更不对称的Nd3+环境。此外,优质光谱系数(χ = Ω4/Ω6)为 0.67,表明 4F3/2 → 4I11/2 发射更适合激光应用。受激发射截面(σp)、理论量子产率(ηQ)、增益带宽(σp × Δλem)和光增益(σp × τrad)等激光参数与钠-钙-硼酸盐、锌-铝-钡-硼酸盐和铋-硼酸盐玻璃中的参数接近,而非辐射率(WNR)和发射强度饱和度(IS)则较低。在 808 nm 激光激发下的发射光谱显示了钕的 4F3/2 → 4I9/2、11/2、13/2 转变,其中 4F3/2 → 4I11/2(1058 nm)转变是更主要的转变,这与χ 参数值一致。Nd3+ 含量高于 1.4 摩尔% 时,由于交叉衰减和/或能量迁移率的增加,会导致发射淬灭。根据 Inokuti-Hirayama 模型,这些过程主要是由 Nd-Nd 簇内的电偶极子-偶极子相互作用介导的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science: Materials in Electronics
Journal of Materials Science: Materials in Electronics 工程技术-材料科学:综合
CiteScore
5.00
自引率
7.10%
发文量
1931
审稿时长
2 months
期刊介绍: The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信