Efficient and selective oxidation of alcohols and hydrocarbons catalyzed by oxovanadium(IV) unsymmetrical salophen complex supported on silica-coated CoFe2O4 magnetic nanoparticles
Mehdi Hatefi Ardakani, Atena Naeimi, Zeynab Mohammadabadi
{"title":"Efficient and selective oxidation of alcohols and hydrocarbons catalyzed by oxovanadium(IV) unsymmetrical salophen complex supported on silica-coated CoFe2O4 magnetic nanoparticles","authors":"Mehdi Hatefi Ardakani, Atena Naeimi, Zeynab Mohammadabadi","doi":"10.1007/s13738-024-03128-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the catalytic activity of an oxovanadium(IV) unsymmetrical salophen complex immobilized on chloro-functionalized silica-coated CoFe<sub>2</sub>O<sub>4</sub> magnetic nanoparticles CoFe<sub>2</sub>O<sub>4</sub>@SiO<sub>2</sub>@CPTMS@VO(salophen-OH), in which salophen-OH = 4-[(E)-{(2-[(E)-2-hydroxybenzylidene)amino]phenyl}imino)methyl]benzene-1,3-diol was explored in the oxidation of alcohols and hydrocarbons. This heterogeneous nanocatalyst showed high activity and selectivity in oxidizing various primary and secondary alcohols to the equivalent aldehydes and ketones with 30% H<sub>2</sub>O<sub>2</sub> as a green oxidant in polyethylene glycol (PEG) as an eco-friendly solvent at 80 °C. Furthermore, the above catalyst demonstrated significant catalytic efficiency in the alkene epoxidation and alkane hydroxylation using <i>tert</i>-butyl hydroperoxide (<i>tert</i>-BuOOH), and the corresponding products were achieved in good to excellent yields in acetonitrile at ambient temperature. This magnetic nanocatalyst can be easily separated from the reaction mixture utilizing an external magnet and reused up to five times without significant activity loss. Moreover, the recovered catalyst’s structure was scrutinized using Fourier transform infrared (FT-IR), vibrating sample magnetometry (VSM), and X-ray diffraction (XRD) techniques, which confirmed that the structure of the catalyst remained unaltered post-recovery.</p></div>","PeriodicalId":676,"journal":{"name":"Journal of the Iranian Chemical Society","volume":"21 12","pages":"3013 - 3024"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Iranian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13738-024-03128-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the catalytic activity of an oxovanadium(IV) unsymmetrical salophen complex immobilized on chloro-functionalized silica-coated CoFe2O4 magnetic nanoparticles CoFe2O4@SiO2@CPTMS@VO(salophen-OH), in which salophen-OH = 4-[(E)-{(2-[(E)-2-hydroxybenzylidene)amino]phenyl}imino)methyl]benzene-1,3-diol was explored in the oxidation of alcohols and hydrocarbons. This heterogeneous nanocatalyst showed high activity and selectivity in oxidizing various primary and secondary alcohols to the equivalent aldehydes and ketones with 30% H2O2 as a green oxidant in polyethylene glycol (PEG) as an eco-friendly solvent at 80 °C. Furthermore, the above catalyst demonstrated significant catalytic efficiency in the alkene epoxidation and alkane hydroxylation using tert-butyl hydroperoxide (tert-BuOOH), and the corresponding products were achieved in good to excellent yields in acetonitrile at ambient temperature. This magnetic nanocatalyst can be easily separated from the reaction mixture utilizing an external magnet and reused up to five times without significant activity loss. Moreover, the recovered catalyst’s structure was scrutinized using Fourier transform infrared (FT-IR), vibrating sample magnetometry (VSM), and X-ray diffraction (XRD) techniques, which confirmed that the structure of the catalyst remained unaltered post-recovery.
期刊介绍:
JICS is an international journal covering general fields of chemistry. JICS welcomes high quality original papers in English dealing with experimental, theoretical and applied research related to all branches of chemistry. These include the fields of analytical, inorganic, organic and physical chemistry as well as the chemical biology area. Review articles discussing specific areas of chemistry of current chemical or biological importance are also published. JICS ensures visibility of your research results to a worldwide audience in science. You are kindly invited to submit your manuscript to the Editor-in-Chief or Regional Editor. All contributions in the form of original papers or short communications will be peer reviewed and published free of charge after acceptance.