{"title":"IoT-Based Integrated Sensing and Logging Solution for Cold Chain Monitoring Applications","authors":"Lalit Kumar Baghel;Radhika Raina;Suman Kumar;Luca Catarinucci","doi":"10.1109/JRFID.2024.3488534","DOIUrl":null,"url":null,"abstract":"Effective cold chain management is critical across various sectors to ensure the integrity of temperature-sensitive goods, ranging from pharmaceuticals to perishable produce. A key challenge within this domain is maintaining items within their required temperature range, typically between 2°C to 8°C, to prevent spoilage or loss of effectiveness. This paper introduces a cost-effective, integrated solution that combines sensors, controllers, and memory into a compact, power-efficient, and low-cost commercial Bluetooth-based temperature & humidity data logger. The proposed solution is particularly useful not only in safeguarding food and pharmaceuticals but also plays a crucial role in the specific context of vaccine storage, such as those for COVID-19, which demands rigorous temperature adherence to ensure efficacy during storage and transportation. Unlike existing solutions, the proposed solution is equipped with interactive algorithms that monitor and record real-time temperature & humidity data throughout the distribution chain. It features a groundbreaking seamless data logging capability, allowing for wireless data retrieval via Bluetooth-enabled devices such as mobile phones, computers, or laptops. The development and testing of the proposed solution have been conducted in our laboratory, ensuring end-to-end performance and efficiency that meet the stringent standards set by health organizations, including the World Health Organization (WHO). A comprehensive comparative analysis further validates the proposed design’s accuracy, cost-effectiveness, and power efficiency, demonstrating its potential to enhance cold chain management practices universally.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"837-846"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of radio frequency identification","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10745873/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Effective cold chain management is critical across various sectors to ensure the integrity of temperature-sensitive goods, ranging from pharmaceuticals to perishable produce. A key challenge within this domain is maintaining items within their required temperature range, typically between 2°C to 8°C, to prevent spoilage or loss of effectiveness. This paper introduces a cost-effective, integrated solution that combines sensors, controllers, and memory into a compact, power-efficient, and low-cost commercial Bluetooth-based temperature & humidity data logger. The proposed solution is particularly useful not only in safeguarding food and pharmaceuticals but also plays a crucial role in the specific context of vaccine storage, such as those for COVID-19, which demands rigorous temperature adherence to ensure efficacy during storage and transportation. Unlike existing solutions, the proposed solution is equipped with interactive algorithms that monitor and record real-time temperature & humidity data throughout the distribution chain. It features a groundbreaking seamless data logging capability, allowing for wireless data retrieval via Bluetooth-enabled devices such as mobile phones, computers, or laptops. The development and testing of the proposed solution have been conducted in our laboratory, ensuring end-to-end performance and efficiency that meet the stringent standards set by health organizations, including the World Health Organization (WHO). A comprehensive comparative analysis further validates the proposed design’s accuracy, cost-effectiveness, and power efficiency, demonstrating its potential to enhance cold chain management practices universally.