Model-Free Solution for Inverse Linear-Quadratic Nonzero-Sum Differential Games

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Emin Martirosyan;Ming Cao
{"title":"Model-Free Solution for Inverse Linear-Quadratic Nonzero-Sum Differential Games","authors":"Emin Martirosyan;Ming Cao","doi":"10.1109/LCSYS.2024.3491633","DOIUrl":null,"url":null,"abstract":"This letter addresses the inverse problem for Linear-Quadratic (LQ) nonzero-sum N-player differential games, where the goal is to learn cost function parameters such that the given tuple of feedback laws, which is known to stabilize a linear system, is a Nash equilibrium (NE) for the synthesized game. We show a model-free algorithm that can accomplish this task using the given feedback laws and the system matrices. The algorithm makes extensive use of gradient descent optimization that allow to find the solution to the inverse problem without solving the forward problem. To further illustrate possible solution characterization, we show how to generate an infinite number of equivalent games without repeatedly running the complete algorithm. Simulation results demonstrate the effectiveness of the proposed algorithms.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"2445-2450"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10742900/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This letter addresses the inverse problem for Linear-Quadratic (LQ) nonzero-sum N-player differential games, where the goal is to learn cost function parameters such that the given tuple of feedback laws, which is known to stabilize a linear system, is a Nash equilibrium (NE) for the synthesized game. We show a model-free algorithm that can accomplish this task using the given feedback laws and the system matrices. The algorithm makes extensive use of gradient descent optimization that allow to find the solution to the inverse problem without solving the forward problem. To further illustrate possible solution characterization, we show how to generate an infinite number of equivalent games without repeatedly running the complete algorithm. Simulation results demonstrate the effectiveness of the proposed algorithms.
逆线性-二次非零和微分博弈的无模型解法
这篇文章探讨了线性-二次方(LQ)非零和 N 人微分博弈的逆问题,其目标是学习成本函数参数,使已知能稳定线性系统的给定反馈定律元组成为合成博弈的纳什均衡(NE)。我们展示了一种无模型算法,它可以利用给定的反馈定律和系统矩阵完成这项任务。该算法广泛使用梯度下降优化,无需求解正向问题即可找到逆向问题的解。为了进一步说明可能的解决方案特征,我们展示了如何在不重复运行完整算法的情况下生成无限多的等价博弈。模拟结果证明了所提算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信