Achieving High Photocatalytic NOx Removal Activity Using a Bi/BiOBr/TiO2 Composite Photocatalyst.

Paransa Alimard, Chen Gong, Ioanna Itskou, Andreas Kafizas
{"title":"Achieving High Photocatalytic NO<sub>x</sub> Removal Activity Using a Bi/BiOBr/TiO<sub>2</sub> Composite Photocatalyst.","authors":"Paransa Alimard, Chen Gong, Ioanna Itskou, Andreas Kafizas","doi":"10.1016/j.chemosphere.2024.143728","DOIUrl":null,"url":null,"abstract":"<p><p>Fossil fuel combustion generates nitrogen oxides (NO + NO<sub>2</sub> = NO<sub>x</sub>), which pose threats to the environment and human health. Although commercial products containing titanium dioxide (TiO<sub>2</sub>) can remedy NOx pollution by photocatalysis, they only function in the ultraviolet (UV). On the other hand, bismuth oxybromide (BiOBr) is active in the visible. BiOBr is stable, affordable, and non-toxic, making it an appealing alternative. In addition, nanoparticulate Bi metal can further enhance visible light absorption through its surface plasmon properties and charge carrier lifetime by spatially separating charge. In this study, to enhance the visible-light activity of TiO<sub>2</sub>-based photocatalysts for NOx pollution, a composite of Bi-decorated BiOBr/TiO<sub>2</sub> was synthesized using a solvothermal method across varying the Ti/Bi atomic ratio (0.2, 2.2, 4.4, and 6.6), and synthesis duration (6h, 12h, and 18h). The photocatalytic performance of the synthesised composites for NO gas removal was investigated using an adapted ISO method (22197-1:2016). Analysis showed that the preferential growth of the (010) crystal facet in BiOBr and the presence of Bi metal both play an important role in the superior photocatalytic activity seen in our Bi-decorated BiOBr/TiO<sub>2</sub> composite. The composites were characterised using X-ray diffraction (XRD), attenuated total reflectance - Fourier transform infrared spectroscopy (ATR-FTIR), high-resolution scanning electron microscopy (HRSEM), UV-Vis diffuse reflectance (DRS) spectroscopy, transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, Brunauer-Emmett-Teller (BET) analysis, thermogravimetric analysis (TGA), and diffuse reflectance transient absorption spectroscopy (DR-TAS). Our research shows that the Bi/BiOBr-TiO2 composite synthesised through the 12-hour solvothermal method with a Ti/Bi atomic ratio of 4.4 exhibits the highest photocatalytic performance towards both NO and NO2 oxidation; with 32.8% and 54.9% NO removal and 15.1% and 29.5% NO2 under visible and UV lamps, respectively.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chemosphere.2024.143728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fossil fuel combustion generates nitrogen oxides (NO + NO2 = NOx), which pose threats to the environment and human health. Although commercial products containing titanium dioxide (TiO2) can remedy NOx pollution by photocatalysis, they only function in the ultraviolet (UV). On the other hand, bismuth oxybromide (BiOBr) is active in the visible. BiOBr is stable, affordable, and non-toxic, making it an appealing alternative. In addition, nanoparticulate Bi metal can further enhance visible light absorption through its surface plasmon properties and charge carrier lifetime by spatially separating charge. In this study, to enhance the visible-light activity of TiO2-based photocatalysts for NOx pollution, a composite of Bi-decorated BiOBr/TiO2 was synthesized using a solvothermal method across varying the Ti/Bi atomic ratio (0.2, 2.2, 4.4, and 6.6), and synthesis duration (6h, 12h, and 18h). The photocatalytic performance of the synthesised composites for NO gas removal was investigated using an adapted ISO method (22197-1:2016). Analysis showed that the preferential growth of the (010) crystal facet in BiOBr and the presence of Bi metal both play an important role in the superior photocatalytic activity seen in our Bi-decorated BiOBr/TiO2 composite. The composites were characterised using X-ray diffraction (XRD), attenuated total reflectance - Fourier transform infrared spectroscopy (ATR-FTIR), high-resolution scanning electron microscopy (HRSEM), UV-Vis diffuse reflectance (DRS) spectroscopy, transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, Brunauer-Emmett-Teller (BET) analysis, thermogravimetric analysis (TGA), and diffuse reflectance transient absorption spectroscopy (DR-TAS). Our research shows that the Bi/BiOBr-TiO2 composite synthesised through the 12-hour solvothermal method with a Ti/Bi atomic ratio of 4.4 exhibits the highest photocatalytic performance towards both NO and NO2 oxidation; with 32.8% and 54.9% NO removal and 15.1% and 29.5% NO2 under visible and UV lamps, respectively.

利用 Bi/BiOBr/TiO2 复合光催化剂实现高光催化氮氧化物去除活性
化石燃料燃烧会产生氮氧化物(NO + NO2 = NOx),对环境和人类健康构成威胁。虽然含有二氧化钛(TiO2)的商业产品可以通过光催化来治理氮氧化物污染,但它们只能在紫外线(UV)下发挥作用。另一方面,氧溴化铋(BiOBr)在可见光范围内具有活性。BiOBr 性能稳定、价格低廉且无毒,是一种很有吸引力的替代品。此外,纳米金属铋还能通过其表面等离子特性和电荷载流子寿命,在空间上分离电荷,从而进一步增强可见光吸收。在本研究中,为了提高基于 TiO2 的光催化剂在氮氧化物污染中的可见光活性,采用溶热法合成了一种 Bi 装饰的 BiOBr/TiO2 复合材料,并改变了 Ti/Bi 原子比(0.2、2.2、4.4 和 6.6)和合成时间(6 小时、12 小时和 18 小时)。采用改编的 ISO 方法(22197-1:2016)研究了合成复合材料去除氮氧化物气体的光催化性能。分析表明,BiOBr 中 (010) 晶面的优先生长和 Bi 金属的存在对 BiOBr/TiO2 复合材料的卓越光催化活性起到了重要作用。使用 X 射线衍射 (XRD)、衰减全反射-傅立叶变换红外光谱 (ATR-FTIR)、高分辨率扫描电子显微镜 (HRSEM)、紫外-可见漫反射 (DRS) 光谱、透射电子显微镜 (TEM) 对复合材料进行了表征、扫描透射电子显微镜 (STEM)、扫描电子显微镜 (SEM)、能量色散 X 射线光谱 (EDS)、X 射线光电子能谱 (XPS)、拉曼光谱、Brunauer-Emmett-Teller (BET) 分析、热重分析 (TGA) 和漫反射瞬态吸收光谱 (DR-TAS)。我们的研究表明,通过 12 小时溶热法合成的 Ti/Bi 原子比为 4.4 的 Bi/BiOBr-TiO2 复合材料对氧化 NO 和 NO2 的光催化性能最高;在可见光和紫外灯下,NO 去除率分别为 32.8% 和 54.9%,NO2 去除率分别为 15.1% 和 29.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信