{"title":"The molecular mechanisms of steroid hormone effects on cognitive function","authors":"Hai Duc Nguyen , Giang Huong Vu , Woong-Ki Kim","doi":"10.1016/j.archger.2024.105684","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>There is a lack of information on the molecular mechanisms by which steroid hormones (testosterone, estrogen, and progesterone) regulate cognitive impairment. Thus, we aimed to identify the protective effects of steroid hormones on cognitive function.</div></div><div><h3>Methods</h3><div>We analyzed the literature on the molecular mechanisms, biological activities, physicochemical properties, and pharmacokinetics of steroid hormones.</div></div><div><h3>Results</h3><div>Steroid hormones can protect against cognitive impairment by regulating key genes (INS, TNF, STAT3, ESR1). Specific microRNAs, namely hsa-miR-335-5p, hsa-miR-16-5p, and hsa-miR-26b-5p, along with transcription factors NFKB1, PPARG, NR3C1, GATA2, EGR1, ATF3, and CEBPA, play a significant role in this protective mechanism. The involvement in cognitive processes, regulation of phosphorylation, neuronal apoptosis, and signaling pathways related to Alzheimer's disease significantly influence the protein-protein interaction network underlying these effects. Additionally, steroid hormones exhibit anti-hypercholesterolemic properties, anti-inflammatory activity, antitoxic properties, and function as inhibitors of acetylcholine neuromuscular transmission. They also hold promise as therapeutic agents for the treatment of dementia. Promising therapeutic interventions for cognitive impairment include the use of miRNA sponges targeting hsa-miR-16-5p, along with the administration of capsaicin, minocycline, dopamine, sertraline, and minaprine. The gut microbiota species <em>Lactobacillus amylovorus, Paraprevotella clara, Libanicoccus massiliensis, Prevotella oris, Turicibacter sanguinis</em>, and <em>Dubosiella newyorkensis</em> were identified as significant contributors to cognitive impairment and altered levels of steroid hormones.</div></div><div><h3>Conclusion</h3><div>Steroid hormones are promising compounds for improving cognitive function. Further research is needed to validate these findings through focused investigations into apoptosis, regulation of neuronal cell death, miRNA sponges, interactions with gut microbiota, and the potential efficacy of pharmaceutical agents.</div></div>","PeriodicalId":8306,"journal":{"name":"Archives of gerontology and geriatrics","volume":"129 ","pages":"Article 105684"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of gerontology and geriatrics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167494324003601","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
There is a lack of information on the molecular mechanisms by which steroid hormones (testosterone, estrogen, and progesterone) regulate cognitive impairment. Thus, we aimed to identify the protective effects of steroid hormones on cognitive function.
Methods
We analyzed the literature on the molecular mechanisms, biological activities, physicochemical properties, and pharmacokinetics of steroid hormones.
Results
Steroid hormones can protect against cognitive impairment by regulating key genes (INS, TNF, STAT3, ESR1). Specific microRNAs, namely hsa-miR-335-5p, hsa-miR-16-5p, and hsa-miR-26b-5p, along with transcription factors NFKB1, PPARG, NR3C1, GATA2, EGR1, ATF3, and CEBPA, play a significant role in this protective mechanism. The involvement in cognitive processes, regulation of phosphorylation, neuronal apoptosis, and signaling pathways related to Alzheimer's disease significantly influence the protein-protein interaction network underlying these effects. Additionally, steroid hormones exhibit anti-hypercholesterolemic properties, anti-inflammatory activity, antitoxic properties, and function as inhibitors of acetylcholine neuromuscular transmission. They also hold promise as therapeutic agents for the treatment of dementia. Promising therapeutic interventions for cognitive impairment include the use of miRNA sponges targeting hsa-miR-16-5p, along with the administration of capsaicin, minocycline, dopamine, sertraline, and minaprine. The gut microbiota species Lactobacillus amylovorus, Paraprevotella clara, Libanicoccus massiliensis, Prevotella oris, Turicibacter sanguinis, and Dubosiella newyorkensis were identified as significant contributors to cognitive impairment and altered levels of steroid hormones.
Conclusion
Steroid hormones are promising compounds for improving cognitive function. Further research is needed to validate these findings through focused investigations into apoptosis, regulation of neuronal cell death, miRNA sponges, interactions with gut microbiota, and the potential efficacy of pharmaceutical agents.
期刊介绍:
Archives of Gerontology and Geriatrics provides a medium for the publication of papers from the fields of experimental gerontology and clinical and social geriatrics. The principal aim of the journal is to facilitate the exchange of information between specialists in these three fields of gerontological research. Experimental papers dealing with the basic mechanisms of aging at molecular, cellular, tissue or organ levels will be published.
Clinical papers will be accepted if they provide sufficiently new information or are of fundamental importance for the knowledge of human aging. Purely descriptive clinical papers will be accepted only if the results permit further interpretation. Papers dealing with anti-aging pharmacological preparations in humans are welcome. Papers on the social aspects of geriatrics will be accepted if they are of general interest regarding the epidemiology of aging and the efficiency and working methods of the social organizations for the health care of the elderly.