Camilla Carbone, Salvatrice Rigogliuso, Valerio Maria Bartolo Brucato, Alessandra Cusimano, Manuela Labbozzetta, Vincenzo La Carrubba, Paola Poma, Monica Notarbartolo, Francesco Carfì Pavia
{"title":"PLLA Porous Scaffold as a 3D Breast Cancer Model to Investigate Drug Resistance.","authors":"Camilla Carbone, Salvatrice Rigogliuso, Valerio Maria Bartolo Brucato, Alessandra Cusimano, Manuela Labbozzetta, Vincenzo La Carrubba, Paola Poma, Monica Notarbartolo, Francesco Carfì Pavia","doi":"10.1002/jbm.a.37836","DOIUrl":null,"url":null,"abstract":"<p><p>Multidrug resistance remains one of the major challenges in breast cancer research, often leading to treatment failure. To better understand this mechanism, sophisticated three-dimensional (3D) tumor models are necessary, as they offer several advantages over traditional bidimensional (2D) cultures. In this study, poly-l-lactic-acid porous scaffolds were produced using a thermally induced phase separation technique and employed as 3D models for breast cancer cell lines: MDA-MB-231, MCF-7, and its multidrug-resistant variant, MCF-7R. The MTS assay was used to compare growth inhibition following doxorubicin treatment in 2D and 3D. Remarkably, the IC<sub>50</sub> values increased in 3D cultures compared to 2D: MDA-MB-231 (445 vs. 54.5 ng/mL), MCF-7 (7.45 vs. 0.75 μg/mL), and MCF-7R (165 vs. 39 μg/mL). MCF-7R, which usually shows greater resistance in 2D, demonstrated even higher resistance in 3D. In fact, IC<sub>50</sub> was not reached within 3 days as with the other models, but only after 6 days. Cellular morphology also played a crucial role. When treated with concentrations higher than the IC<sub>50</sub>, MDA-MB-231 cells lost their physiological 3D clustered structure, while MCF-7 and its resistant variant exhibited disrupted layers. All cell lines in 3D showed higher chemoresistance, suggesting a more biomimetic spatial architecture. Our work bridges the gap between monolayer and animal models, highlighting the potential of polymeric 3D scaffolds in breast cancer research.</p>","PeriodicalId":94066,"journal":{"name":"Journal of biomedical materials research. Part A","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbm.a.37836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Multidrug resistance remains one of the major challenges in breast cancer research, often leading to treatment failure. To better understand this mechanism, sophisticated three-dimensional (3D) tumor models are necessary, as they offer several advantages over traditional bidimensional (2D) cultures. In this study, poly-l-lactic-acid porous scaffolds were produced using a thermally induced phase separation technique and employed as 3D models for breast cancer cell lines: MDA-MB-231, MCF-7, and its multidrug-resistant variant, MCF-7R. The MTS assay was used to compare growth inhibition following doxorubicin treatment in 2D and 3D. Remarkably, the IC50 values increased in 3D cultures compared to 2D: MDA-MB-231 (445 vs. 54.5 ng/mL), MCF-7 (7.45 vs. 0.75 μg/mL), and MCF-7R (165 vs. 39 μg/mL). MCF-7R, which usually shows greater resistance in 2D, demonstrated even higher resistance in 3D. In fact, IC50 was not reached within 3 days as with the other models, but only after 6 days. Cellular morphology also played a crucial role. When treated with concentrations higher than the IC50, MDA-MB-231 cells lost their physiological 3D clustered structure, while MCF-7 and its resistant variant exhibited disrupted layers. All cell lines in 3D showed higher chemoresistance, suggesting a more biomimetic spatial architecture. Our work bridges the gap between monolayer and animal models, highlighting the potential of polymeric 3D scaffolds in breast cancer research.