PLLA Porous Scaffold as a 3D Breast Cancer Model to Investigate Drug Resistance.

Camilla Carbone, Salvatrice Rigogliuso, Valerio Maria Bartolo Brucato, Alessandra Cusimano, Manuela Labbozzetta, Vincenzo La Carrubba, Paola Poma, Monica Notarbartolo, Francesco Carfì Pavia
{"title":"PLLA Porous Scaffold as a 3D Breast Cancer Model to Investigate Drug Resistance.","authors":"Camilla Carbone, Salvatrice Rigogliuso, Valerio Maria Bartolo Brucato, Alessandra Cusimano, Manuela Labbozzetta, Vincenzo La Carrubba, Paola Poma, Monica Notarbartolo, Francesco Carfì Pavia","doi":"10.1002/jbm.a.37836","DOIUrl":null,"url":null,"abstract":"<p><p>Multidrug resistance remains one of the major challenges in breast cancer research, often leading to treatment failure. To better understand this mechanism, sophisticated three-dimensional (3D) tumor models are necessary, as they offer several advantages over traditional bidimensional (2D) cultures. In this study, poly-l-lactic-acid porous scaffolds were produced using a thermally induced phase separation technique and employed as 3D models for breast cancer cell lines: MDA-MB-231, MCF-7, and its multidrug-resistant variant, MCF-7R. The MTS assay was used to compare growth inhibition following doxorubicin treatment in 2D and 3D. Remarkably, the IC<sub>50</sub> values increased in 3D cultures compared to 2D: MDA-MB-231 (445 vs. 54.5 ng/mL), MCF-7 (7.45 vs. 0.75 μg/mL), and MCF-7R (165 vs. 39 μg/mL). MCF-7R, which usually shows greater resistance in 2D, demonstrated even higher resistance in 3D. In fact, IC<sub>50</sub> was not reached within 3 days as with the other models, but only after 6 days. Cellular morphology also played a crucial role. When treated with concentrations higher than the IC<sub>50</sub>, MDA-MB-231 cells lost their physiological 3D clustered structure, while MCF-7 and its resistant variant exhibited disrupted layers. All cell lines in 3D showed higher chemoresistance, suggesting a more biomimetic spatial architecture. Our work bridges the gap between monolayer and animal models, highlighting the potential of polymeric 3D scaffolds in breast cancer research.</p>","PeriodicalId":94066,"journal":{"name":"Journal of biomedical materials research. Part A","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbm.a.37836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multidrug resistance remains one of the major challenges in breast cancer research, often leading to treatment failure. To better understand this mechanism, sophisticated three-dimensional (3D) tumor models are necessary, as they offer several advantages over traditional bidimensional (2D) cultures. In this study, poly-l-lactic-acid porous scaffolds were produced using a thermally induced phase separation technique and employed as 3D models for breast cancer cell lines: MDA-MB-231, MCF-7, and its multidrug-resistant variant, MCF-7R. The MTS assay was used to compare growth inhibition following doxorubicin treatment in 2D and 3D. Remarkably, the IC50 values increased in 3D cultures compared to 2D: MDA-MB-231 (445 vs. 54.5 ng/mL), MCF-7 (7.45 vs. 0.75 μg/mL), and MCF-7R (165 vs. 39 μg/mL). MCF-7R, which usually shows greater resistance in 2D, demonstrated even higher resistance in 3D. In fact, IC50 was not reached within 3 days as with the other models, but only after 6 days. Cellular morphology also played a crucial role. When treated with concentrations higher than the IC50, MDA-MB-231 cells lost their physiological 3D clustered structure, while MCF-7 and its resistant variant exhibited disrupted layers. All cell lines in 3D showed higher chemoresistance, suggesting a more biomimetic spatial architecture. Our work bridges the gap between monolayer and animal models, highlighting the potential of polymeric 3D scaffolds in breast cancer research.

将聚乳酸(PLLA)多孔支架作为研究抗药性的三维乳腺癌模型
多药耐药性仍是乳腺癌研究的主要挑战之一,往往导致治疗失败。为了更好地了解这一机制,有必要建立复杂的三维(3D)肿瘤模型,因为与传统的二维(2D)培养相比,三维(3D)肿瘤模型具有多种优势。本研究采用热诱导相分离技术制备了聚乳酸多孔支架,并将其用作乳腺癌细胞系的三维模型:MDA-MB-231、MCF-7 及其耐多药变体 MCF-7R。MTS 检测法用于比较二维和三维多柔比星处理后的生长抑制情况。值得注意的是,与二维培养相比,三维培养的 IC50 值有所增加:MDA-MB-231(445 vs. 54.5 ng/mL)、MCF-7(7.45 vs. 0.75 μg/mL)和 MCF-7R(165 vs. 39 μg/mL)。MCF-7R通常在2D中表现出更强的抗药性,但在3D中表现出更强的抗药性。事实上,它并不像其他模型那样在 3 天内达到 IC50,而是在 6 天后才达到。细胞形态也起着至关重要的作用。当处理浓度高于 IC50 时,MDA-MB-231 细胞失去了生理性的三维团状结构,而 MCF-7 及其抗性变体则表现出层状破坏。三维结构中的所有细胞株都表现出更高的化疗耐受性,这表明它们的空间结构更具生物仿生性。我们的研究填补了单层模型和动物模型之间的空白,凸显了聚合物三维支架在乳腺癌研究中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信