Anna Ericsson, David J Richard, Erik Wilker, David R Lancia, Shawn Fessler, Paul Troccolo, Xiaozhang Zheng, Angela Toms, Christopher Dinsmore, Lili Yao, Frans A Kuypers, Sandra Larkin, Douglas Marcotte, Keertik Fulzele, Maria Ribadeneira, Sylvie M Guichard, Gary Marshall
{"title":"FT-4202, a selective pyruvate kinase R activator for sickle cell disease.","authors":"Anna Ericsson, David J Richard, Erik Wilker, David R Lancia, Shawn Fessler, Paul Troccolo, Xiaozhang Zheng, Angela Toms, Christopher Dinsmore, Lili Yao, Frans A Kuypers, Sandra Larkin, Douglas Marcotte, Keertik Fulzele, Maria Ribadeneira, Sylvie M Guichard, Gary Marshall","doi":"10.1016/j.exphem.2024.104673","DOIUrl":null,"url":null,"abstract":"<p><p>Anemia in patients with sickle cell disease (SCD) increases 2,3-diphosphoglycerate (2,3-DPG), decreasing hemoglobin-oxygen (HbO<sub>2</sub>) affinity to improve oxygen offloading and promote hemoglobin polymerization (sickling) of red blood cells (RBCs). We report the discovery of FT-4202, an investigational, selective pyruvate kinase type-R (PKR) activator with a multimodal mechanism of action and potential to increase ATP and decrease 2,3-DPG, resulting in increased HbO<sub>2</sub> affinity, decreased Hb polymerization, and improved RBC health. FT-4202 was identified via structure-enabled lead optimization medicinal chemistry using X-ray crystallography, molecular modeling, and thermal shift assays. FT-4202, an allosteric PKR activator, stabilizes the tetrameric enzyme and increases PKR activity in human and mouse RBCs in vitro. Seven-day oral administration of FT-4202 in Berkeley SCD mice reduced 2,3-DPG, increased HbO<sub>2</sub> affinity, and reduced RBC sickling versus control. There were no adverse in vitro safety findings. FT-4202 offers a therapeutic opportunity to modify the course of SCD.</p>","PeriodicalId":12202,"journal":{"name":"Experimental hematology","volume":" ","pages":"104673"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental hematology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.exphem.2024.104673","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Anemia in patients with sickle cell disease (SCD) increases 2,3-diphosphoglycerate (2,3-DPG), decreasing hemoglobin-oxygen (HbO2) affinity to improve oxygen offloading and promote hemoglobin polymerization (sickling) of red blood cells (RBCs). We report the discovery of FT-4202, an investigational, selective pyruvate kinase type-R (PKR) activator with a multimodal mechanism of action and potential to increase ATP and decrease 2,3-DPG, resulting in increased HbO2 affinity, decreased Hb polymerization, and improved RBC health. FT-4202 was identified via structure-enabled lead optimization medicinal chemistry using X-ray crystallography, molecular modeling, and thermal shift assays. FT-4202, an allosteric PKR activator, stabilizes the tetrameric enzyme and increases PKR activity in human and mouse RBCs in vitro. Seven-day oral administration of FT-4202 in Berkeley SCD mice reduced 2,3-DPG, increased HbO2 affinity, and reduced RBC sickling versus control. There were no adverse in vitro safety findings. FT-4202 offers a therapeutic opportunity to modify the course of SCD.
期刊介绍:
Experimental Hematology publishes new findings, methodologies, reviews and perspectives in all areas of hematology and immune cell formation on a monthly basis that may include Special Issues on particular topics of current interest. The overall goal is to report new insights into how normal blood cells are produced, how their production is normally regulated, mechanisms that contribute to hematological diseases and new approaches to their treatment. Specific topics may include relevant developmental and aging processes, stem cell biology, analyses of intrinsic and extrinsic regulatory mechanisms, in vitro behavior of primary cells, clonal tracking, molecular and omics analyses, metabolism, epigenetics, bioengineering approaches, studies in model organisms, novel clinical observations, transplantation biology and new therapeutic avenues.