Daniel Bulanda , Janusz A. Starzyk , Adrian Horzyk
{"title":"FlexPoints: Efficient electrocardiogram signal compression for machine learning","authors":"Daniel Bulanda , Janusz A. Starzyk , Adrian Horzyk","doi":"10.1016/j.jelectrocard.2024.153825","DOIUrl":null,"url":null,"abstract":"<div><div>The electrocardiogram (ECG) stands out as one of the most frequently used medical tests, playing a crucial role in the accurate diagnosis and treatment of patients. While ECG devices generate a huge amount of data, only a fraction of it holds valuable medical information. To deal with this problem, many compression algorithms and filters have been developed over the years. However, the rapid development of new machine-learning techniques introduces new challenges. To address this class of problems, we have introduced a FlexPoints algorithm. This innovative algorithm searches for characteristic points on the ECG signal and ignores all other points that lack pertinent medical information. The conducted experiments have demonstrated that our proposed algorithm can significantly reduce the number of data points representing ECG signals without losing valuable medical insights. These sparse but essential characteristic points, referred to as flex points, serve as well-fitted input for modern machine learning models. Such models exhibit enhanced performance when using flex points as input, as opposed to raw data or data compressed by other popular algorithms.</div></div>","PeriodicalId":15606,"journal":{"name":"Journal of electrocardiology","volume":"88 ","pages":"Article 153825"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electrocardiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022073624002954","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The electrocardiogram (ECG) stands out as one of the most frequently used medical tests, playing a crucial role in the accurate diagnosis and treatment of patients. While ECG devices generate a huge amount of data, only a fraction of it holds valuable medical information. To deal with this problem, many compression algorithms and filters have been developed over the years. However, the rapid development of new machine-learning techniques introduces new challenges. To address this class of problems, we have introduced a FlexPoints algorithm. This innovative algorithm searches for characteristic points on the ECG signal and ignores all other points that lack pertinent medical information. The conducted experiments have demonstrated that our proposed algorithm can significantly reduce the number of data points representing ECG signals without losing valuable medical insights. These sparse but essential characteristic points, referred to as flex points, serve as well-fitted input for modern machine learning models. Such models exhibit enhanced performance when using flex points as input, as opposed to raw data or data compressed by other popular algorithms.
期刊介绍:
The Journal of Electrocardiology is devoted exclusively to clinical and experimental studies of the electrical activities of the heart. It seeks to contribute significantly to the accuracy of diagnosis and prognosis and the effective treatment, prevention, or delay of heart disease. Editorial contents include electrocardiography, vectorcardiography, arrhythmias, membrane action potential, cardiac pacing, monitoring defibrillation, instrumentation, drug effects, and computer applications.