Fine mapping and candidate gene mining of QSc/Sl.cib-7H for spike compactness and length and its pleiotropic effects on yield-related traits in barley (Hordeum vulgare L.).
Jinhui Wang, Yanyan Tang, Jin Li, Juanyu Zhang, Furong Huang, Qiang Li, Baowei Chen, Li'ao Zhang, Tao Li, Haili Zhang, Junjun Liang, Guangbing Deng, Wei Li, Hai Long
{"title":"Fine mapping and candidate gene mining of QSc/Sl.cib-7H for spike compactness and length and its pleiotropic effects on yield-related traits in barley (Hordeum vulgare L.).","authors":"Jinhui Wang, Yanyan Tang, Jin Li, Juanyu Zhang, Furong Huang, Qiang Li, Baowei Chen, Li'ao Zhang, Tao Li, Haili Zhang, Junjun Liang, Guangbing Deng, Wei Li, Hai Long","doi":"10.1007/s00122-024-04779-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>A major locus for spike compactness and length was mapped on chromosome 7H and its pleiotropic effects, candidate genes and transcriptional regulatory network were analyzed. Spike compactness (SC) and length (SL) are important traits of barley (Hordeum vulgare L.) due to their close association with grain yield. In this study, a major SC and SL locus QSc/Sl.cib-7H was primarily identified on chromosome 7H by bulked segregant analysis, and further fine mapped to a recombination cold spot expanding 244.36-388.09 Mb by developing a secondary population using residual heterozygous lines. This region is much more accurate than previously reported spike compactness loci on chromosome 7H. The strong effects of QSc/Sl.cib-7H on SL and SC were validated in two pair of near isogenic lines (NILs) and diverse genetic backgrounds. QSc/Sl.cib-7H exhibited pleiotropic effects on plant height (PH), thousand grain weight and grain length, and did not significantly influence the spikelet number of main spike (SMS) and grain width. Transcriptome analysis based on NILs showed that regulation of SC and SL might be related to the plant circadian rhythm pathway. The candidate genes were mined by analyzing variants and expression patterns of genes in the target region employing multiple genome and transcriptome data. This study takes a further step towards cloning of QSc/Sl.cib-7H, and the data obtained and the developed molecular markers will facilitate its utilization in barley breeding.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 12","pages":"269"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-024-04779-7","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Key message: A major locus for spike compactness and length was mapped on chromosome 7H and its pleiotropic effects, candidate genes and transcriptional regulatory network were analyzed. Spike compactness (SC) and length (SL) are important traits of barley (Hordeum vulgare L.) due to their close association with grain yield. In this study, a major SC and SL locus QSc/Sl.cib-7H was primarily identified on chromosome 7H by bulked segregant analysis, and further fine mapped to a recombination cold spot expanding 244.36-388.09 Mb by developing a secondary population using residual heterozygous lines. This region is much more accurate than previously reported spike compactness loci on chromosome 7H. The strong effects of QSc/Sl.cib-7H on SL and SC were validated in two pair of near isogenic lines (NILs) and diverse genetic backgrounds. QSc/Sl.cib-7H exhibited pleiotropic effects on plant height (PH), thousand grain weight and grain length, and did not significantly influence the spikelet number of main spike (SMS) and grain width. Transcriptome analysis based on NILs showed that regulation of SC and SL might be related to the plant circadian rhythm pathway. The candidate genes were mined by analyzing variants and expression patterns of genes in the target region employing multiple genome and transcriptome data. This study takes a further step towards cloning of QSc/Sl.cib-7H, and the data obtained and the developed molecular markers will facilitate its utilization in barley breeding.
期刊介绍:
Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.