Jiangbing Xiang, Huating Chen, Hongliang Zhang, Lu Wu, Yan Li, Shuaifei Ji, Wei Pi, Shaoyuan Cui, Lei Dong, Xiaobing Fu, Xiaoyan Sun
{"title":"Restoring sweat gland function in mice using regenerative sweat gland cells derived from chemically reprogrammed human epidermal keratinocytes.","authors":"Jiangbing Xiang, Huating Chen, Hongliang Zhang, Lu Wu, Yan Li, Shuaifei Ji, Wei Pi, Shaoyuan Cui, Lei Dong, Xiaobing Fu, Xiaoyan Sun","doi":"10.1016/j.scib.2024.11.003","DOIUrl":null,"url":null,"abstract":"<p><p>The regeneration of sweat glands (SwGs) plays a pivotal role in the functional recovery of extensive skin wounds. Recent research has illuminated the possibility of reprogramming human epidermal keratinocytes (HEKs) into induced SwG cells through the ectopic expression of ectodysplasin A. However, the clinical application of this genetic manipulation approach is inherently limited. In this study, we present findings demonstrating that a combination of six compounds can effectively and speedily reprogram HEKs in culture into fully functional SwG cells. These chemically induced SwG-like cells (ciSGCs) closely resemble the morphology, phenotypes, and functional properties of human primary SwG ductal cells. Furthermore, ciSGCs can be stimulated to differentiate into mature SwG cell types in vitro. In a 3D culture system, they can also generate SwG organoids that exhibit structural and biological features akin to native SwGs. Upon transplantation into scalded mouse paw skin, ciSGCs significantly expedited cutaneous wound healing and completely restored the structural and functional aspects of the SwGs. In conclusion, the small molecule cocktail-directed SwG reprogramming offers a non-transgenic and controllable strategy for producing high-quality, clinical-grade SwG cells, showing immense potential for the treatment of burn patients.</p>","PeriodicalId":421,"journal":{"name":"Science Bulletin","volume":" ","pages":"3908-3924"},"PeriodicalIF":18.8000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Bulletin","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.scib.2024.11.003","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The regeneration of sweat glands (SwGs) plays a pivotal role in the functional recovery of extensive skin wounds. Recent research has illuminated the possibility of reprogramming human epidermal keratinocytes (HEKs) into induced SwG cells through the ectopic expression of ectodysplasin A. However, the clinical application of this genetic manipulation approach is inherently limited. In this study, we present findings demonstrating that a combination of six compounds can effectively and speedily reprogram HEKs in culture into fully functional SwG cells. These chemically induced SwG-like cells (ciSGCs) closely resemble the morphology, phenotypes, and functional properties of human primary SwG ductal cells. Furthermore, ciSGCs can be stimulated to differentiate into mature SwG cell types in vitro. In a 3D culture system, they can also generate SwG organoids that exhibit structural and biological features akin to native SwGs. Upon transplantation into scalded mouse paw skin, ciSGCs significantly expedited cutaneous wound healing and completely restored the structural and functional aspects of the SwGs. In conclusion, the small molecule cocktail-directed SwG reprogramming offers a non-transgenic and controllable strategy for producing high-quality, clinical-grade SwG cells, showing immense potential for the treatment of burn patients.
期刊介绍:
Science Bulletin (Sci. Bull., formerly known as Chinese Science Bulletin) is a multidisciplinary academic journal supervised by the Chinese Academy of Sciences (CAS) and co-sponsored by the CAS and the National Natural Science Foundation of China (NSFC). Sci. Bull. is a semi-monthly international journal publishing high-caliber peer-reviewed research on a broad range of natural sciences and high-tech fields on the basis of its originality, scientific significance and whether it is of general interest. In addition, we are committed to serving the scientific community with immediate, authoritative news and valuable insights into upcoming trends around the globe.